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ABSTRACT
Edited film alignment is the post-production process of finding small
parts of unedited footage that temporally and spatially match an
edited film. The huge amount of data to be processed makes signif-
icant downsampling of the videos essential in real-life applications.
Simultaneously, professional users demand that the task be achieved
with frame and pixel-level accuracy. We propose a novel selective
Hough transform (SHT) and an accurate template matching method
to address the difficult trade-off between accuracy and scalability.
For robust temporal alignment, SHT investigates the selectivity of
frame-level similarities and advantageously reduces the weights of
mismatches. The template matching method encompasses spatial
Hough transform and sum of squared differences (SSD) minimiza-
tion. SSD is efficiently approximated by exploiting the second-order
derivative of image intensity. Experiments conducted on real-world
data show the superiority of our methods.

Index Terms — Video copy detection, Hough transform, tem-
plate matching, sum of squared differences (SSD), approximate SSD

1. INTRODUCTION

Given a collection of unedited footage and an edited film, edited film
alignment is the process of determining, for each frame of the edited
film, the take, the frame, and the spatial position at which the frame
concerned occurs in the collection. There is a growing need for an
automated edited film alignment system, and professional users de-
mand that the task be achieved with frame and pixel-level accuracy.
The system should also be able to address reframing, e.g., pan, tilt,
and zoom. Figure 1 shows a common film editing framework. The
pieces of raw, unedited footage recorded during the making of a mo-
tion picture are called dailies. They consist of multiple takes. A
take refers to each filmed version of a particular scene. The film edi-
tor works with the dailies, selecting shots from takes and combining
them into a sequence to create a finished motion picture.

Edited film alignment relates to two research agendas known as
video copy detection and template matching. Video copy detection
methods arrange a query and each reference video to identify the
video and the temporal position at which the query occurs. Douze et
al. [1] conducted pairwise frame matching and showed that the tem-
poral offset of the query can be found with a 1DOF Hough transform.
Although global features showed great efficiency as regards frame
matching without a viewpoint change [2, 3], more researchers have
paid attention to local features [4, 5] or local feature geometry [1, 6]
when addressing geometric transformations, e.g., caused by refram-
ing. However, the huge amount of data to be processed makes sig-
nificant downsampling of frames essential in real-life applications,
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Fig. 1. Film editing. Each color indicates a single scene.

which degrades the accuracy due to unavoidable mismatches. This
is one of the main issues we address in this study.

Template matching methods find small parts of an image that
match a template image. The simplest way is to consider a huge
number of geometric transformations and to find the transformation
that minimizes the SSD error of pixels. Previous efforts were put into
reducing either the transformation candidates [7–9] or the reference
pixels [10]. Lowe [11] showed that a spatial Hough transform based
on local features, followed by a least-squares solution, enables more
efficient template matching. However, the least-squares solution
tends to deliver a suboptimal approximation of the true transforma-
tion when the errors in feature correspondences are non-negligible.
This leads to another issue that we focus on in this study.

We propose a novel edited film alignment approach to address
the above issues that involves a selective Hough transform (SHT)
and an accurate template matching method. Aiming at robust tem-
poral alignment, the SHT investigates the selectivity of frame-level
similarities and advantageously reduces the weights of mismatches
(Section 2). The template matching method encompasses a spatial
Hough transform and SSD minimization to achieve spatial alignment
with pixel-level accuracy (Section 3). To accommodate the increase
in complexity, for each transformation candidate we approximate the
SSD error using a sublinear algorithm that examines only a small
number of pixels with strong responses in terms of their second-
order derivatives. In Section 4, we report our experiments conducted
on real-word data provided by a film production company. Future
directions are discussed in Section 5.

2. EDITED FILM ALIGNMENT IN TEMPORAL DOMAIN

2.1. Overview

We assume that the shot boundaries of the edited film are detected in
advance. Given a shot, the problem is to determine the take T ∗ and
the temporal offset ∆t∗ at which the shot was selected. If the offset is
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(a) Similarity sequence
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(b) Ordered similarity sequence
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(c) Rescaled residual sequence
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(d) Selectivity function output

Fig. 2. Examples of similarity sequences, ordered similarity sequences, rescaled residual sequences, and selectivity function output.

constant over time, we can solve this problem with a 2DOF Hough
transform. Let Ii and ti denote each shot frame and its time stamp,
respectively. For each take frame I′j, we are given the take ID Tj

and time stamp t ′j. The temporal transformation derived from each
pair (Ii, I′j) form an ordered pair (Tj,∆ti, j) with ∆ti, j = t ′j − ti. The
two parameters in this ordered pair span a 2DOF voting map. The
Hough transform is realized by voting all (Ii, I′j) into the voting map
according to their temporal transformations. The vote is defined as
the similarity between Ii and I′j and is denoted by si, j. Take T ∗ can
thus be determined by T ∗= argmaxT (max∆t h(T,∆t)), and the offset
is determined by ∆t∗ = max∆t h(T ∗,∆t). Here, h(·, ·) is the total vote
of each bin in the voting map. Because of its great efficiency, we
adopt a bag-of-visual-words (BOVW) model [12, 13] to define the
pairwise frame similarity si, j .

2.2. Selective Hough Transform

The huge amount of data to be processed makes significant down-
sampling of dailies vital in real life applications because of the effi-
ciency requirement. This downsampling weakens the temporal con-
sistency constraint imposed on offset detection and degrades the ac-
curacy due to unavoidable mismatches.

Given a shot frame Ii and its corresponding take T ∗ with n
frames, we look at the similarities between Ii and all take frames I′j:

si = (si,1,si,2, · · · ,si, j, · · · ,si,n). (1)

We call si the similarity sequence of Ii. Two examples of si are shown
in Fig. 2a. The red curve shows the similarity sequence of an am-
biguous frame, which votes for multiple hypotheses with roughly
equivalent voting values. In contrast, the blue curve corresponds to
a more distinguishing frame and is expected to be more useful for
offset detection. For robust offset detection, it is necessary to reduce
the weights of ambiguous frames, and to accentuate the weights of
distinguishing frames. Douze et al. [1] focused on a similar issue
and proposed weighting the similarity on the basis of the l1-norm or
the maximum frame-level similarity. However, the direct application
of this method may overemphasize the similarity between Ii and the
frames of irrelevant takes, resulting in a suboptimal balance between
take detection and temporal alignment.

Here, we consider a thresholded, polynomial selectivity function
σα : R→ R+ of the form

σα (si, j) =

{
|si, j− εi|α if si, j > εi

0 else
(2)

where εi ∈ [0,s(i)max] with s(i)max being the maximum of si and α > 0.
The SHT replaces each si, j with σα (si, j) and casts the latter for the
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Fig. 3. Example voting maps. The red and green circles are the offset
detected by the Hough transform and the true offset, respectively.

corresponding (Tj,∆ti, j). A larger α increases the selectivity and
implicitly yet greatly reduces the weights of potential mismatches.
We want to adaptively select εi such that a larger εi, which mini-
mizes the contribution of votes, is used for ambiguous frames, and
vice versa. The similarity sequence of an ambiguous frame is usu-
ally shaped like a uniform distribution, while that of a distinguishing
frame is much more single-peaked. This motivates us to define

εi = wi× s(i)max (3)

and to select wi ∈ [0,1] by exploiting the non-uniformity of si.
In particular, we sort all si, j ∈ si in descending order, as shown

in Fig. 2b. We then construct the first degree polynomial equation
of the ordered similarity sequence. In the next step, the fitted curve,
which is expected to approximate the distribution of off-peak sim-
ilarities that are far from the head of si, is subtracted from the or-
dered similarity sequence. This is to eliminate the effect of off-peak
similarities on the selection of wi and to increase the margin of the
non-uniformity of si between ambiguous and distinguishing frames.
From Fig. 2c, we can see that the rescaled residual sequence of the
ambiguous frame has a much larger area under the curve (AUC) than
that of the distinguishing frame. We thus define wi by

wi =
AUC(r̄i)

n
(4)

where r̄i denotes the rescaled residual sequence. The weight is sub-
stituted into Eq. 3 to determine the adaptive threshold εi, as shown
by the heavy black lines in Fig. 2a. The output of the selectivity
function is shown in Fig. 2d. We can see how the SHT suppresses
the function of the ambiguous frame. Figure 3 compares two voting
maps obtained with the Hough transform and the SHT, where the
SHT allows a much easier prediction of the temporal offset.

3. ACCURATE TEMPLATE MATCHING

3.1. Spatial Hough Transform and Revalidation

Once the temporal offset has been detected, Lowe’s method [11] can
be used to detect the geometric transformation between each shot
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(d) Nr( f0(p))

Fig. 4. Investigation of usefulness of pixels for template matching.

frame and its counterpart in the corresponding take. Given a tem-
plate I (shot) and an image I′ (take), the method outputs a set of
confident feature correspondences. Lowe proposed applying least
squares to the coordinates of these correspondences to accurately
estimate the geometric transformation.

To avoid suboptimal approximation, we generate a transforma-
tion candidate from each confident correspondence [11] and revali-
date all the candidates to find a transformation that comes close to
minimizing the SSD between I and I′. Let f : R2 → R2 denote the
transformation function that maps a coordinate p ∈ I to its counter-
part f (p) ∈ I′. Let P be a subset of pixels in I. The SSD between I
and I′ is of the form

SSD f (I, I′) =
1
|P| ∑

p∈P
|I′( f (p))− I(p)|2. (5)

Instead of using all the pixels, we approximate SSD by inspecting
a small fraction, e.g., 0.005% (100 samples for FHD resolution), of
pixels from I. In Section 3.2, we investigate the usefulness of pixels
for minimizing the negative effect of the approximation.

3.2. Second-Order Derivative of Image Intensity

Given a pixel p ∈ I (Fig. 4a), let f0 and f1 be the true transformation
and an incorrect transformation, respectively. The corresponding co-
ordinates f0(p) and f1(p) in I′ are shown in Fig. 4b with green and
red dots. The transformations f0 and f1 are distinguishable with I(p)
only if

|I′( f1(p))− I(p)|2 > |I′( f0(p))− I(p)|2. (6)

Assuming that I(p)≈ I′( f0(p)), we can obtain the necessary condi-
tion of Eq. 6:

|I′( f1(p))− I′( f0(p))|> 0. (7)

The left part of Eq. 7 can be understood as a cue that indicates how
useful I′( f0(p)) is for rejecting f1. Let u( f0(p)) denote this cue. Let
r be the distance between f0(p) and f1(p), and Nr( f0(p)) be the set
of coordinates (Fig. 4d) that are at most r pixels away from f0(p). If
we broaden our scope from f1(p) to all the coordinates in Nr( f0(p)),

Table 1. Dataset.
Dataset Resolution #shot #take #frame (shot) #frame (take)

HOC 1920×1080 25 110 2,088 216,465

we can extend u( f0(p)) by

u( f0(p)) = ∑
q∈Nr

∣∣I′(q)− I′( f0(p))
∣∣ (8)

≥

∣∣∣∣∣ ∑
q∈Nr

I′(q)− I′( f0(p))

∣∣∣∣∣ (9)

where Eq. 9 is the lower bound of Eq. 8. To maximize the accuracy
of the approximation, we wish to find the pixels with the largest
response in terms of the right hand side of Eq. 9.

Note that the computation of Eq. 9 for all the pixels in I′ equals
the convolution of I′ with a Laplacian operator whose size depends
on r. The response of Eq. 9 of a given pixel thus corresponds to
its second-order derivative of intensity. This important connection
inspired us to utilize commonly used second-order approaches, e.g.,
LoG [14] and DoG [11], for effective pixel sampling.

3.3. Pixel Sampling

We adopt a Hessian affine region detector [15, 16] for this purpose,
which corresponds to a hybrid operator between the Laplacian and
the determinant of the Hessian operator. The scale of the points de-
tected by this approach is related to the radius r in Fig. 4 and plays
an important role as an alternative barometer of pixel usefulness. An
interest point with a smaller scale marks a great distinction from its
neighboring pixels, and so is advantageously more sensitive to the
variation between similar transformations. Therefore, we sort all
interest points in ascending order of their scales and select the top
points for the SSD approximation. In Section 3.2, we discussed the
usefulness of the pixels by using the take frame I′ as an example. In
practice, since the number of shots is much smaller than the number
of takes, we sample pixels only from the shot for greater efficiency.

Note that our method uses the pixels that lie centrally in the in-
terest points only for the SSD approximation. No feature descriptor
or correspondence is required at this stage. Our method is different
from conventional local feature-based methods, for example Lowe’s
method [11], which rely on corresponding feature points for com-
puting the global transformation.

4. EXPERIMENTS

4.1. Implementation

Our methods are built on top of local feature-based image indexing.
We used a rotation-variant Hessian affine region detector [15, 16] to
extract local features, and used root SIFT descriptors [17]. A visual
vocabulary containing 1M visual words was trained on an indepen-
dent dataset called Oxford Buildings [13]. An inverted index was
used to efficiently compute the cosine similarity si, j between BOVW
histograms, and to find correspondences in Lowe’s method [11].

4.2. SHT

We evaluated the SHT on a real-world dataset, called House of Cards
(HOC), provided by a film production company. Table 1 shows its
statistics. Given a shot and the voting map obtained with a Hough
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Fig. 5. MRR vs. frame rate (take). α = 5.

transform, we sort all takes and all the temporal offsets in the rele-
vant take according to their scores (Section 2.1) in the voting map.
This gives us two ranking lists; one for take detection and one for
temporal alignment. We use the mean reciprocal rank (MRR) [18]
and the accuracy at one rank as the evaluation measure.

Figure 5 shows the relationship between MRR and the frame rate
of takes. On the shot side, we used all the frames to achieve frame-
level accuracy. Although the MRR of the SHT also degrades as we
decrease the frame rate, it consistently outperforms the conventional
Hough transform for all the tested frame rates.

Table 2. Average MRR and average accuracy over all tested frame
rates (take). α = 5.

Methods
Take Detection Temporal Alignment

MRR Accuracy MRR Accuracy

Hough Transform 1 1 .880 .842
Max Weighting [1] 1 1 .888 .847
l1-Norm Weighting [1] .810 .647 .926 .892

SHT (Otsu’s Method [19]) 1 1 .852 .803
SHT (MET [20]) 1 1 .925 .887
SHT (Our Method) 1 1 .944 .920
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Fig. 6. Average MRR vs. α .

Table 2 compares SHTs with the two weighting methods used
in Douze et al.’s method [1]. We also compared our thresholding
method with Otsu’s method [19] and maximum entropy threshold-
ing (MET) [20], which are widely used in image processing. The
l1-norm weighting [1] performed reasonably well for temporal align-
ment, but degraded the accuracy of take detection due to the overem-
phasis of the similarity between shots and irrelevant takes. Otsu’s
method and MET underperformed our method because they only
work on bimodal distributions, which is not the case with the frame-
level similarity sequence focused on in an SHT. The relationship be-
tween MRR and the parameter α (Eq. 2) is shown in Fig. 6. The
SHT treats all non-zero votes as one when α = 0 and reduces to max
pooling when α → ∞. We set α = 5 for all previous evaluations.
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Fig. 7. Template matching error vs. #sample (HOC*). The red line
indicates the error of Lowe’s method [11].

4.3. Template Matching

Since it is difficult to manually label the geometric transformation
between shot and take frames, we created a synthetic dataset based
on HOC to evaluate template matching. For each shot frame, its
counterpart in the relevant take is randomly projected with a simi-
larity transformation. The resulting dataset contains 2,088 pairs of
template and image frames, and is called HOC*. Given a frame pair,
our method outputs the coordinates of the bounding box where the
template occurs. We look at the maximum difference between the
estimated and the true coordinates. The average of the maximums
over all frame pairs is defined as the template matching error.

In Fig. 7, we compare our method with Lowe’s method [11],
uniform sampling, random sampling, and a reversed version of our
method. Uniform sampling and random sampling correspond to the
solutions adopted by Zhang and Akashi [9] and by Korman et al. [8],
respectively. Reverse sampling sorts the interest points with their
scales in descending rather than ascending order.

By inspecting only a small fraction of the pixels, e.g., 0.002%
for 40 samples, all the methods that encompasses the spatial Hough
transform and SSD minimization outperformed Lowe’s method [11].
With a larger number of samples, both reverse sampling and our
method outperform uniform and random sampling, which demon-
strates the validity of sampling pixels on the basis of their second-
order derivatives. However, reverse sampling did not match our
method in terms of accuracy, especially when the number of sam-
ples was lower than 40. This supports our discussion in Section 3.3
on the radius r in Fig. 4. With 100 samples, we obtained a tem-
plate matching error of 1.55 pixels and reduced the error of Lowe’s
method by 75%.

5. CONCLUSIONS AND FUTURE DIRECTIONS

We proposed a novel selective Hough transform (SHT) and a tem-
plate matching method for edited film alignment. The SHT sup-
presses the negative impact of mismatched frames and allows the
easier prediction of temporal offsets. We investigated the relation-
ship between template matching and the second-order derivative of
image intensity. We also showed how the second-order derivative
and the scale of interest points can be used as barometers of pixel
usefulness for effective pixel sampling. In the future, we plan to ex-
plore the reliability of our method by extending the experiments to
larger-scale data. During template matching, we utilized a Hessian
affine region detector [15, 16] for pixel sampling. It will be inter-
esting to explore whether we can improve our approach by directly
manipulating the responses of the Laplacian and the determinant of
the Hessian operator. This will be the subject of a future study.
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