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ABSTRACT

Diffusion maps, when applied to large datasets, are typically con-
structed by a process of sampling and out-of-sample function exten-
sion. However, the performance of anomaly detection in large data
when using diffusion maps is sensitive to the chosen samples. In this
paper we propose an iterative data-driven approach to improve the
sample set and diffusion maps representation. By updating the sam-
ple set with suspicious points detected in the previous iteration, the
constructed diffusion maps better separate the anomaly from the nor-
mal points in each iteration. Experimental results in side-scan sonar
images demonstrate the improvement gained by our iterative sam-
pling compared to random sampling and other competing detection
algorithms.

Index Terms— anomaly detection, diffusion maps, dimension-
ality reduction, manifold learning, automated target detection

1. INTRODUCTION

In image anomaly detection, the goal is to identify an object in the
image and separate it from the background based on its different ap-
pearance or statistical properties. Automatic detection algorithms
are of practical importance in military target detection applications,
medical image analysis and automation of quality assurance pro-
cesses, given the large amount of images produced in such appli-
cations. A robust solution will present the user only with suspicious
objects, saving valuable time and effort, as suspicious objects occur
very rarely by nature.

Anomaly detection in images is challenging due to several fac-
tors: the large size of the dataset (images of up to millions of pixels),
high dimensionality of the features used for image representation
and the presence of noise, especially in remote sensing imagery. It
is also difficult to obtain labeled data, and the datasets tend to be
unbalanced due to the sparseness of anomalies compared to nor-
mal data [1]. There are many approaches to solving this problem
based on statistical models, machine learning, saliency based meth-
ods, sparse representations and more [2–10]. Statistical approaches
estimate a statistical model for the data and use this information to
determine whether a test sample comes from the distribution de-
scribing the normal data points [2, 4, 6]. The problem with statis-
tical approaches is that the choice of the distribution to model the
image is not obvious, it is application-dependent and the parameter
estimation becomes complex in multi-class backgrounds. Detection
methods using machine learning require training data, which is not
always available and time-consuming to label. Both approaches may
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fail when the query images differ from the training data [1] and they
are not easily adapted to new application and image characteristics.

Image features are typically high-dimensional, but can be shown
to lie on a low-dimensional manifold. Manifold learning techniques,
such as diffusion maps [11], find a new low-dimensional represen-
tation for the data, which reveals meaningful structures. Such tech-
niques can provide a representation that separates the anomaly from
the background, making the detection easier in the new representa-
tion space. In addition, such approaches are data-driven and do not
depend on a-priori model for the data. Related work proposing di-
mensionality reduction methods for anomaly detection employ sta-
tistical tools for detection in the reduced dimension and relied on
training data [5, 8]. We propose an approach which is completely
data-driven, with the detection score based on nearest neighbors in
the embedding space.

Due to the large size of the dataset, applying diffusion maps to
images typically requires performing sampling and out-of-sample
function extension in order to calculate an embedding for all im-
age patches [12, 13]. In a previous work [14] we analyzed that this
process can limit the success of the dimensionality reduction in re-
vealing the presence of anomalies in the data. To overcome these
limitations, we proposed an unsupervised multiscale algorithm for
anomaly detection using diffusion maps [14], and an anomaly detec-
tion score relying on the noise-robust diffusion distance.

In this paper, we propose an alternative iterative approach on the
full-scale image. Starting with a random subset of images patches,
we apply a diffusion-maps based anomaly detector at each iteration,
and then extract a set of suspicious patches to be used in the next
iteration. Thus, the iterative process updates the subset of samples
to ensure better separability of the anomaly from the background
clutter. The advantage of this approach compared to the multiscale
approach is that it is not limited to images and it requires less param-
eters. In addition, we provide motivation for this approach based on
theoretical analysis of spectral clustering, where we view anomaly
detection as a vastly unbalanced clustering problem.

The paper is organized as follows. Sec. 2 reviews the diffusion
map framework for dimensionality reduction. In Sec. 3, we provide
motivation for the proposed approach and present the iterative algo-
rithm. Finally, Sec. 4 demonstrates the application of the proposed
algorithm to automatic target detection in real images of side-scan
sonar where the anomalies are sea-mines.

2. DIFFUSION MAPS

In recent years, a large number of non-linear techniques for dimen-
sionality reduction have been developed, based on the underlying
geometry of the data and intended as a precursor to other types of
processing. These include ISOMAP [15], locally linear embedding
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(LLE) [16], Laplacian Eigenmaps [17], Hessian Eigenmaps [18],
and Diffusion Maps [11]. We focus on the diffusion maps method,
which is based on the construction of the graph Laplacian of the data.
In addition to capturing the main structure of the data in few dimen-
sions, this method is equipped with a noise-robust computationally
efficient metric, the diffusion distance, which is the Euclidean dis-
tance in the low-dimensional embedding space.

Let Γ = {xi}Mi=1 be a high-dimensional dataset of M samples
of dimensionality N . A weighted graph is constructed on Γ with
the data points as nodes and the weight of the edge connecting two
nodes is a measure of the similarity between the two data points.
Let w(xi,xj) be a kernel representing the pairwise affinity between
two samples, which conveys the local geometry of the data. The
choice of the specific kernel function should be application-driven.
For all xi,xj ∈ Γ, the kernel function has the following properties:
(1) symmetry; (2) non-negativity; (3) fast decay. A popular choice
which satisfies these properties is the Gaussian kernel:

w(xi,xj) = exp
{
−‖xi − xj‖2/2σ2} . (1)

We construct the normalized graph Laplacian on the dataset as
follows. For each xi the kernel is normalized by the degree d(xi):

p(xi,xj) =
k(xi,xj)

d(xi)
, d(xi) =

M∑
j=1

k(xi,xj) (2)

Since p(xi,xj) > 0 and
M∑
j=1

p(xi,xj) = 1, p(xi,xj) can be in-

terpreted as the probability for a random walker to jump from xi
to xj in a single time step. Therefore, the row-stochastic matrix
P[i, j] = p(xi,xj) can be seen as the transition matrix of a Markov
chain on the dataset Γ. Taking powers of the matrix, Pt, is equiva-
lent to running the Markov chain forward t steps. The eigendecom-
position of the matrix P yields a sequence of left and right biorthog-
onal eigenvectors {ϕj , ψj} and eigenvalues, written in a descending
order: 1 = |λ0| > |λ1| ≥ |λ2| ≥ . . ..

Coifman and Lafon [11] propose a new metric, termed the dif-
fusion distance, based on the construction of the random walk:

dDM(xi,xj) =
∑
l≥1

λ2t
` (ψ`(i)− ψ`(j))

2. (3)

This distance measures the similarity of two points according to the
evolution of the transition probability distribution pt(xi,xj) in the
Markov chain. It is robust to noise, since the distance depends on all
possible paths of length t between two points. Due to the fast spec-
trum decay of {λj}, the diffusion distance can be well approximated
by only the first few ` eigenvectors.

Thus, the right eigenvectors of the transition matrix P and cor-
responding eigenvalues can be used to define a new data-driven rep-
resentation of {xi} termed diffusion maps. The mapping Ψt(xi)
embeds the data points {xi} in a low-dimensional Euclidean space
R`, defined as

Ψt(xi) =
[
λt

1ψ1(i), · · · , λt
`ψ`(i)

]T
, (4)

where we set t = 1.
The scale parameter σ is of great significance in constructing

the affinity kernel (1). Setting σ to be too small results in a discon-
nected graph, where many points are connected only to themselves.
Setting σ to be too large results in all the points of the graph being
connected. This is especially undesirable in the setting of anomaly
detection, where setting σ to be too large will connect the anomalies

with the cluttered background. We expect the anomaly to be in a low
density neighborhood and the background to belong to a high density
neighborhood. Therefore a local scale factor σ = σiσj is beneficial,
such as the one proposed by Zelnik-Manor and Perona [19].

3. ITERATIVE ANOMALY DETECTION

Our aim is to detect a connected group of pixels in the image that
constitute an anomaly. We choose to represent the pixels by their
surrounding patches, but other features can be used. Let Γ be the set
of all

√
N×
√
N overlapping patches from the image Γ = {pi}Mi=1.

The size of the dataset for images, M , is very large, since even for
small images there is a large number of patches. Therefore, it can be
computationally inefficient to construct a diffusion map using all the
patches in the image, in terms of both calculating the affinity and per-
forming an eigen-decomposition, especially for high-resolution im-
ages. Instead, it is a common approach [12, 13] to construct the dif-
fusion map for an image using a subset of m < M random patches,
denoted Γ = {pj}mj=1 ⊆ Γ. Then the diffusion map coordinates Ψ
are extended to the set of all patches in the image Γ using an out-
of-sample extension (OOSE) method [20–22]. As discussed in [14],
OOSE methods can cause anomaly detection to fail, depending on
the set of random samples Γ ⊆ Γ used to construct the diffusion
map. To overcome this limitation of the OOSE for anomaly detec-
tion, we propose an iterative approach which drives the sampling
process and ensures the inclusion of samples from the anomaly re-
gion in Γ. We first provide motivation for our approach based on
spectral clustering and then present the iterative approach.

3.1. Spectral Clustering

Spectral clustering methods propose to cluster data into k clusters
with the first dominant eigenvectors of an affinity matrix on the
data [19,23–25]. Anomaly detection can be seen as a special case of
clustering in which there is a vast imbalance in the size of clusters,
background vs. anomaly, and the density of each cluster. Several
works in spectral clustering analyze the limitations and success of
spectral clustering in the setting of a diffusion process in a multi-well
potential or a mixture of Gaussians model [25–27]. They present two
characteristic times that determine the success of spectral clustering.
The first is the relaxation time for each cluster τR and the second is
the mean first passage time τexit between two clusters. These depend
on the covariance matrix of each cluster and its density. Spectral
clustering succeeds when the fastest exit time from any of the clus-
ters Ci is significantly slower than the slowest relaxation time in each
one of the clusters, i.e. maxi{τR(Ci)} < mini{τexit(Ci)}. Other-
wise, the leading eigenfunctions capture only the relaxation process
inside the dominant cluster (or clusters), and do not differentiate the
remaining clusters, and therefore the clustering fails. Nadler and
Galun [26] show that spectral clustering cannot successfully cluster
datasets that contain structures at different scales of size and density,
as in our setting. Thus, even if using all patches in the image, the
dominant eigenvectors could fail to capture the anomaly in the case
of a multi-class background.

This limitation is even more pronounced when using a subset of
samples from the data. In a case where there are no anomalies in Γ
and it consists only of samples from a single N -dimensional cluster
(the background), then the eigenvectors capture only the relaxation
process within this cluster [28]. This also occurs when the data con-
tains multiple background clusters, such that the sample set is highly
unbalanced in terms of the sample density of each cluster. In these
cases, the diffusion map fails to capture the difference between the
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anomaly and the background. The OOSE of the diffusion map to
the anomaly points will not succeed in assigning them new coor-
dinates that distinguish them from the background. Thus, anomaly
detection when the samples from the anomaly are not included in the
calculation of the initial diffusion map requires extrapolation of the
diffusion coordinates and not interpolation. However, it is not clear
how to perform extrapolation on the low-dimensional manifold, if
at all possible. This is a “chicken and egg” problem in which it is
necessary to sample the anomaly for the purpose of detecting it.

To overcome this limitation of OOSE, we propose an iterative
approach, inspired by [4], which drives the sampling process and
ensures the inclusion of samples from the anomaly region in Γ. By
constructing a sample set which includes a more balanced set of both
anomaly and background points, we improve the detection compared
to an unbalanced set which is composed mostly, if not entirely, of
background points. In our approach, initially random samples are
used in Γ and then more and more suspicious points are sampled
from iteration to iteration. This is equivalent to reducing the local
density of the large dominant background clusters while increasing
the density of the anomaly cluster in the sample set. The diffusion
map is then dominated by the anomaly and not the background.

3.2. Iterative Sampling

Given an image, we extract all overlapping patches to obtain Γ, and
initialize Γ with a random subset of m patches from Γ. We then
calculate an affinity kernel, calculate the diffusion map for Γ and
extend the embedding to all the patches using an OOSE method.
An anomaly score SCAS (presented in Sec. 3.4) is calculated for all
patches based on their diffusion embedding. We mark suspicious
patches by applying a threshold τ to the anomaly score, where we
set τ to be the 95th percentile of the anomaly score. This is the out-
put of the initial iteration. In the next iteration, we set Γ to include
the suspicious patches and the rest of the patches are chosen at ran-
dom so that |Γ| = m. The process of sampling, dimensionality re-
duction and anomaly detection continues from iteration to iteration,
with each iteration providing prior information on which samples of
the dataset will be used in Γ to construct the diffusion map. At the
final iteration, we use a hard threshold on the detection score SCAS

and then smooth the resulting image.
Our approach is based on the assumption that anomaly patches

will be included among the suspicious patches, and therefore, be
represented in the diffusion map of the next iteration. Even if they
are not included, it is likely they are more similar to other irregular
patches in the background that will be included in Γ. Thus, when the
diffusion map is extended from Γ to the anomaly patches, they will
be assigned a representation similar to that of the irregular patches
and therefore, will be marked as suspicious for the next iteration.

3.3. Affinity kernel and Out-of-sample Extension

We propose to replace the regular diffusion maps construction de-
scribed in Sec. 2 with a combined embedding and OOSE approach
previously proposed in supervised settings [29–31]. We treat the set
of sampled patches Γ as a reference set and calculate a non-square
affinity matrix between Γ and Γ:

A[i, j] = exp{−‖pi − pj‖
2/σiσj}, (5)

such that A is an M ×m affinity matrix where M > m.
We then define the symmetric matrix W = ATA which is an

m×m matrix between the sample patches in Γ:

W[i, j] =

M∑
l=1

A[l, i]A[l, j]. (6)

The advantage of this construction compared to using the affinity
kernel in (1) is that it takes into account not only the distances be-
tween the sample patches, but between the sample patches and all
patches in the image. The matrix W can be interpreted as an affin-
ity between any two sample patches via all the patches in the im-
age [30,31]. Thus, two sample patches are similar if they “view” the
rest of the image patches the same, i.e. their distances to all other
patches in the image are similar. This implies that they belong to
the same local “patch neighborhood”. Note that by distance here we
refer to the high-dimensional difference of the patch intensity values
and not the spatial distance within the image. Thus, this kernel is
better at suppressing noisy connections between two patches. This
is important when the number of samples is limited as in our ap-
proach. In addition, this approach provides an elegant and efficient
OOSE as follows.

An eigen-decomposition of W yields the eigenvectors {φl}l
and eigenvalues λl. The eigenvectors {φl}l are also the singular
right vectors of A and can be used to calculate the singular left eigen-
vectors {ψl}l, ψl ∈ RM of A by simple matrix multiplication [29]

ψl =
1√
λl

Aφl. (7)

Thus, an eigen-decomposition of W provides an efficient manner
in which to calculate the singular left eigenvectors {ψl}l of A, and
obtain the embedding of all patches in Γ following (4).

3.4. Detection Score

We use the anomaly detection score proposed in [32], relying on the
diffusion distance between pairs of patches. Let {qi,k}Kk=1 be theK
most similar patches of a patch pi under the diffusion distance (3).
Then the anomaly detection score is given by:

SCAS(i) = 1− exp

{
− 1

K

K∑
k=1

dDM(pi,qk)/2σK

1 + 3dposition(pi,qk)

}
, (8)

where dposition(pi,qk) is the Euclidean spatial distance between the
center pixels of patches pi and qk. The parameter σK is a nor-
malizing factor given by the standard deviation of the diffusion dis-
tances between all patches and their Kth nearest neighbor: σK =
std
i∈Γ
{dDM(pi,qK)}.

This score is inspired by the saliency map in [33], quantifying
the observation that background patches are similar to both near and
far patches, whereas salient patches are grouped together and similar
only to nearby patches. We measure the similarity between patches
using the diffusion distance, which is preferable to the Euclidean dis-
tance between the patches intensities since it is robust to noise. Also,
the diffusion map better separates the anomaly from the background,
compared to using image patches [32]. Normalizing this distance by
the spatial distance dposition penalizes background patches by assign-
ing them a low distinctness value. To ensure that most values are
spread out in the range [0, 1] and therefore comparable to dposition,
we normalize the diffusion distance by σK .
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4. EXPERIMENTAL RESULTS

We apply the proposed algorithm to sea-mine detection in real side-
scan sonar images, achieving a high detection rate with a low rate of
false-alarms. We treat the sea-mines in the images as anomalies and
the reflections from the seabed are considered normal background
clutter. Automatic detection of sea mines in side-scan sonar imagery
is a challenging task due to the high variability in the appearance of
the target and sea-bed reverberations (background clutter). Objects
in side-scan sonar appear as a strong bright region (highlight) along-
side a dark region (shadow), which is due to the object blocking the
sonar waves from reaching the seabed. Most algorithms for detec-
tion of sea-mines in side-scan sonar make use of a training set, based
on real images and/or synthetic ones [6,34,35]. Our diffusion-based
approach does not require a training set and makes no assumptions
regarding the appearance of the mine or its shadow in the image.

We evaluated our approach on a set of 48 side-scan sonar images
of size 200×200 pixels. We use patches of size 8×8 and a sampling
density of 20% of the patches so that m ≈ 8000. Note that the size
of the images enables denser sampling of the image, however we
intentionally use a small percentage of the patches in the image to
demonstrate that this framework is applicable also for larger-sized
images. The patches are embedded to a diffusion maps space of
dimensionality ` = 6.

Detections are found by applying a threshold to the final
anomaly score image, resulting in a binary image. A detection
is a connected component (CC) in the binary image, where a CC
containing the sea-mine is a true positive (TP) and any other CCs
are false alarms (FA). We count all detections on the sea-mine as a
single TP for a given image, whereas there can be more than one FA
in an image. The size of the CC can be used to reject noisy detec-
tions by discarding small CCs. We compare two thresholds on the
area of the CC: 5 pixels and 10 pixels. Using a larger threshold on
the size rejects more FAs, but can also result in a decreased amount
of TPs, for small sized anomalies. We compare the percentage of
TPs for each method for a given FA rate. Results are given in Fig. 1.

We compare our proposed iterative diffusion detection (IDD) al-
gorithm with three other methods:

• IterStat: An iterative local statistical model-based method as
proposed in [4].

• CAS: The saliency method proposed in [33] where detection
is performed by applying a threshold to the saliency map.

• MS-CAS: The multiscale method we proposed in [32].

The IDD method is based on the joint diffusion and OOSE construc-
tion presented in Sec. 3.3. We compare this method to the “tra-
ditional” approach of calculating the diffusion map using only the
sample set as in Sec. 2 and performing OOSE, where we employ the
Laplacian pyramids approach in [21] (denoted IDD-LP).

For both IDD (blue plot) and IDD-LP (red plot), the second iter-
ation results in a significant increase in performance (comparing the
dashed plot for the first iteration to the solid plot for the second iter-
ation). Comparing IDD and IDD-LP, calculating the affinity matrix
for the sample set by integrating the affinity to all patches in the im-
age yields a gain of about 4% in the second iteration. Both methods
are comparable to the multiscale MS-CAS approach we proposed
in previous work (yellow plot) with an advantage of 6% for IDD.
Another advantage of our new approach is that MS-CAS is based
on a multiscale representation of the image and is thus limited to
anomaly detection in images. The IDD method can be adapted to
any data provided an anomaly score in the diffusion maps space.
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Fig. 1. Percentage of true positives for given number of false alarms
for detections of size greater that (a) 5 pixels and (b) 10 pixels.

Comparing the diffusion-based iterative method to the statisti-
cal method (green plot), our data-driven approach has significantly
higher performance and is not sensitive to parameter selection
of the statistical model. Our method also outperforms the CAS
method [33]. The reason for this is that the saliency-based method
uses a feature space which is suitable for natural images. The images
we tested are side-scan sonar and are very noisy. Thus, some of the
noise patterns in the background are given a high saliency score.
Using the diffusion map as a feature space suppresses the noise, due
to the robustness of the diffusion distance, and the noisy patterns are
clustered with the background and not detected as anomalies.

5. CONCLUSIONS

We presented a new iterative anomaly detection algorithm using dif-
fusion maps. Based on a spectral clustering analysis, we proposed a
method that iteratively improves the sample set used to construct the
diffusion map by including suspicious samples detected in the pre-
vious iteration. This leads to a representation that better separates
the anomaly from the background. In addition, we obtained an im-
proved representation by using an affinity kernel that incorporates all
the data and not just the limited sample set. Our algorithm achieved
successful performance in the challenging task of automatic target
detection in side-scan sonar images and achieved superior results
compared to competing methods.
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