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ABSTRACT

Human body analysis raises special interest because it enables a wide
range of interactive applications. In this paper we present a gesture
estimator that discriminates body poses in depth images. A novel
collaborative method is proposed to learn 3D features of the human
body and, later, to estimate specific gestures. The collaborative es-
timation framework is inspired by decision forests, where each se-
lected point (anchor point) contributes to the estimation by casting
votes. The main idea is to detect a body part by accumulating the in-
ference of other trained body parts. The collaborative voting encodes
the global context of human pose, while 3D features represent local
appearance. Body parts contributing to the detection are interpreted
as a voting process. Experimental results for different 3D features
prove the validity of the proposed algorithm.

1. INTRODUCTION

The detection of human features such as voice and gestures allows
devices to respond in human detection applications. Over the past
decade, new technologies have arisen to the point of enabling ef-
ficient human-machine interaction. This is the case of affordable
depth sensors for computer vision. Leaving aside color images,
depth data carry spatial information that may suit better geometrical
measurements for space related detection. Additionally, advances in
machine learning provide better computational models that adapt to
training data. Improved data and classifiers allow for better detectors
in estimation problems.

This paper focuses on the detection of particular configurations
of the human body, providing relevant information as a strong indi-
cator of human gestures. Detecting body pose and gesture leads to
outstanding applications in motion capture, human-computer inter-
action, improved surveillance, body-language interpretation, activity
classification, sports monitoring, etc. The main contribution of this
paper is a novel collaborative voting framework for depth images
where full body pose and position of the body skeleton are jointly
estimated.

The structure of the paper is as follows: the next section gives
an overview of the state of the art in body pose estimation over depth
data. Section 3 presents an overview of the proposed algorithm,
while section 4 explains in detail the collaborative voting framework.
The 3D features analyzed are explained in section 5. Finally, results
and conclusions are drawn in sections 6 and 7.

This research was developed in the framework of the BIGGRAPH
project –TEC2013-43935-R– funded by the Ministerio de Economı́a y Com-
petitividad and the European Regional Development Fund (ERDF)

2. STATE OF THE ART

Hough Forests for color images [1], as proposed by Gall et al. [2],
are a successful example for the detection of body parts. A hierarchi-
cal perspective of body parts is proposed by Navaratnam et al. [3]. In
the work presented by Eichner et al. [4], an articulated human body
model is used to improve the segmentation of body parts. More re-
cently, Dantone et al. [5] presented a double layered model for de-
tecting body joints. Leibe06 et al. [6] presented an Implicit Shape
Model that combines the recognition and segmentation of objects in
a common probabilistic framework.

For depth information, the work of Shotton et al. [7] trains a
Random Forest to detect body parts. Although it requires a large
training dataset (i.e. +900K images), the use of synthetic data is
an interesting strategy to easily enlarge the dataset [7, 8]. López
et al. [9] propose to detect specific body gestures by means of an
unbalanced Random Forest approach. Their approach is largely real-
time and robust, allowing frame-wise tracking of these gestures over
time.

Other depth-based methods define an energy function specifi-
cally for depth data, eventually leading to impressive results [10, 11].
In [11], a mixed Iterative Closest Point (ICP) which takes into ac-
count physical-spatial constrains is applied to modelled body parts.
Schwarz et al. [12] robustly detect anatomical landmarks in the 3D
data and fit a skeleton body model using constrained inverse kine-
matics. Grest et al. [13] use a non-linear least squares estimation
based on silhouette edges able to track limbs in adverse background
conditions. While many methods focus on upper-body pose, Plage-
mann et al. [14] present a fast method which localizes body parts on
2.5D data at about 15 frames per second.

Closer to our proposal, Dantone et al. [15] proposed a human
pose estimation system using two-layered random forests as joint
regressors. Similarly, Baak et al. [16] proposed a solution where
dataset samples are used to infer the current pose by looking for the
best hypothesis that matches the current pose (based on a feature
vector similarity). A generative method predicts the body pose and
the final pose decision is determined by means of a voting process
fusing both hypothesis components. Zeeshan Zia et al. [17] exploit
3D geometric class representations to recover object parts for recog-
nition. Furthermore, a 3D mesh MoSIFT feature descriptor is used
for the behavior analysis of hands and gesture in [18].

3. PROPOSED SCHEME

We propose a discriminative scheme for body pose estimation. First,
a training phase processes point clouds and extracts a collection of
templates which characterize local parts of the body. Detection is
done by processing the input cloud with the same (common) train-
ing scheme and, afterwards, its output is passed onto the Collabora-
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Fig. 1. General scheme. The functional block diagram used in both
training and detection phases.

tive Voting algorithm which, using the previously trained templates,
estimates a body pose.

The common scheme (Fig. 1) starts from a point cloud. In our
case, the cloud is extracted from a Kinect depth camera, applying
a plane clipping to remove background elements such as floor and
walls. A point cloud subset is selected by random sampling as an-
chor points for further processing. After that, a 3D feature is com-
puted from the anchor points neighborhood (Section 5 describes the
features used). Finally, a data vector from every anchor is stored as
training template.

In the detection phase, the common scheme first extracts the 3D
features in a similar way, and a Collaborative Voting framework is
then used to estimate the body pose together with the body joint
positions.

4. COLLABORATIVE VOTING FRAMEWORK

The Collaborative Voting (CV) framework applies to multipart ob-
ject detection. The Voting concept consists in inferring an object part
location by an accumulation process, where each contribution can be
counted as a vote, similarly to Hough accumulators. The word Col-
laborative comes from the idea that every object part cast votes to
other object parts’ locations, giving this sense of collaboration.

The proposed CV framework infers body joint locations in order
to build a full body skeleton and a global pose ID identifying the cur-
rent body gesture. Joints are found by accumulating votes from the
cloud subset (anchors) contributing to joint locations (collaborative
decision). Votes for each contribution are selected from templates
trained based on anchors’ local similarity.

In training, at the end of the common scheme, a data structure
defined as training template is filled for every anchor point as shown
in Fig. 2. A template is formed with: 3D anchor position, 1D feature
histogram vector (see Section 5), difference vectors between body
joints locations and anchor 3D position and a gesture ID number of
the global pose. Note that the body joints locations are known from
the groundtruth annotated in the training dataset.

In the detection phase, the same templates are filled for every
anchor, but excluding the difference vectors and the pose gesture ID,
which is the goal of the detection. A similarity measure is required
for the detection process, as the algorithm has to select the most
similar templates on the training template collection for a specific
anchor. The distance between templates to find the more similar
ones in the training template collection is as follows:

Di,k = w
1

1
N

∑
j∈N sj

|si − sk|+ (1− w)‖yi − yk‖2 (1)

This distance is a blend of 2 factors: the normalized anchor po-
sition s for all training samples N and the squared distance between

Fig. 2. Body anchor template components: 3D anchor position,
neighboring points, votes to body joints, feature 1D histogram and
body pose ID.

1D feature histograms y. A weighting parameterw ranging from 0 to
1 is included to tune which of the 2 factors has more influence. Note
that anchor position is normalized with the average anchor position
of the training set samples sj to keep the same order of magnitude
with the normalized 1D histogram distance.

The voting process consists in accumulating votes from each an-
chor towards the overall detection. First, for every anchor, a k-NN is
applied (using distance Di,k) on the training templates collection to
obtain the most similar templates. A vote is defined as a 3D position
hypothesis where a specific body joint is located. In this context,
votes are formed by adding the difference vectors (from the k-NN
training templates) and the current anchor position being processed
in detection. At this point, once all anchors have been processed, a
collection of votes is retrieved. Next step is to accumulate all votes.
For this purpose, a fixed 3D voxelization is proposed as the accu-
mulator structure (votemap) for each body joint. The voting con-
sists in incrementing the voxel value where a vote position falls into.
The final estimated body joint location is the voxel position from its
votemap with the maximum value. Note that with high voxelization
resolution (small voxels) the voting process tends to increment iso-
lated voxels and therefore leads to a non discriminative detection.
To overcome this, a certain degree of smoothing is introduced by the
influence of a Gaussian sphere around the votes. Fig. 3 shows an
example of the Gaussian spheres voting for the hand position. Each
vote increases the value of neighboring voxels around the vote po-
sition following a Gaussian decay distribution I , which is based on
the distance between the voxel center c and the vote position v. The
variance parameter for this Gaussian decay is fixed to 12.5 cm2:

I = e−
1

12.5
‖c−v‖2 (2)

The same idea is applied to detect the global pose ID but, instead
of voxelizing, the accumulator is a 1D histogram with all possible
body gestures as bins. In this case, a vote is an integer number which
is the body gesture ID stored in the training template. Voting is done
by increasing the histogram bin indicated by votes. Finally, the bin
with maximum value is the detected global pose.
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Fig. 3. Graphical representation of Gaussian sphere votes related to
the right-hand joint.

5. 3D FEATURES

This section describes the 3D features used for the proposed collab-
orative voting framework.

We implemented the collaborative voting scheme with three dif-
ferent features: Curvature, Oriented Radial Distribution and His-
togram of Oriented Normal Vectors. These 3D features represent
better the shape of point clouds than isolated points. Formally, the
features are functions of a single point p in the input cloud P , cou-
pled with feature-specific parameters x = [x1, . . . , xn] as its do-
main, and valued either as a scalar or a fixed dimension vector y =
[y1, . . . , yn].

y = f(Np,r, x) (3)

where Np,r are the points in the neighborhood where the fea-
ture is evaluated. These points are defined as points in P con-
tained inside a sphere of radius r and centered at p: Np,r =
{p0 ∈ P | ‖p0 − p‖ < r}.

5.1. Curvature

Curvature C is defined on the neighborhood Np,r as:

C =
λ0

λ0 + λ1 + λ2
(4)

where λi are the increasing eigenvalues of the covariance matrix
of neighboring point locations, from Principal Component Analysis
(PCA). In 3D, this measure indicates how much the smallest compo-
nent differs from the other two. When C equals zero, the points are
contained in a plane. Curvature highlights the sparsity of non-planar
point subsets.

Table 1. Average distance error associated with articulations
Joint Error Joint Error
Head 5.7cm Neck 4.9cm
Left Shoulder 4.8cm Right Shoulder 5.2cm
Left Elbow 12.1cm Right Elbow 10.9cm
Left Hand 20.2cm Right Hand 17.1cm
Left Hip 5.7cm Right Hip 6.6cm
Left Knee 4.4cm Right Knee 5.8cm
Left Foot 5.4cm Right Foot 7.8cm

Fig. 4. Overall F-measure of HONV, Curvature and ORD with vary-
ing number of histogram bins evaluated on [19]

Fig. 5. Precision, Recall and F-measure for each pose gesture.

5.2. Oriented Radial Distribution

Oriented Radial Distribution (ORD), as proposed by Suau et al. [20],
was designed to highlight prominent shapes in 3D space, i.e., point
subsets considered as the part of a surface with non-homogeneous
patterns. ORD is evaluated projecting the neighborhood onto its
tangent plane and evaluating the homogeneity of its circular distri-
bution. A specific filtering functionality is applied in low-density
neighborhoods to avoid noise from depth sensors. ORD values for
salient points in the surface are higher than those in planar regions.

5.3. Histogram of Oriented Normal Vectors

The Histogram of Oriented Normal Vectors (HONV) by Tang et
al. [21] capture local geometric characteristics from the normal vec-
tors of surfaces. The authors propose a coarse normal estimation
based on the image gradient, with depth variation as magnitude. For
point clouds in 3D space, we compute normals from PCA analysis
in a smaller neighborhood, choosing the smallest component as the
normal.
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Fig. 6. Average detection error in centimeters.

6. RESULTS

6.1. Datasets and experiments

We evaluate the proposed collaborative voting framework using two
different datasets: the Stanford dataset [22], as a baseline reference
used to compare with the state-of-the-art, and the UPC dataset [19].
This second dataset features 12 subjects performing 10 different
standstill body poses (or static gestures) of different complexity.
The groundtruth consists of an associated label with the body pose
and the positions from a frame-based articulated body model (14
joints), which makes it convenient to study the behavior of the 3D
features, and to evaluate both the spatial detection accuracy, and the
overall voting framework.

In both datasets, a leave-one-out cross validation strategy is
used. In all experiments, the parameters are set to 20 frames per
gesture, neighbors radius r = 30cm, Gaussian deviation of 25cm
for creating the voting map and K = 15 nearest neighbors per
anchor.

6.2. 3D Feature evaluation

For the dataset in [19], Fig. 4 assesses the behavior of the three 3D
features varying the number of histogram bins. We set w = 0 in
Equation 1 so only the feature information is used as the distance
metric. In the case of HONV, for which the histogram is 2D, the
number of bins is distributed equally in half to X bins and the rest to
Y bins. The F-measure is used to evaluate the algorithm accumulat-
ing true/false and positives/negatives for the entire dataset.

ORD outperforms both Curvature and HONV in any configura-
tion. All features tend to converge as the number of bins increase.
In the ORD case, a late decay is observed due to over-fitting. Con-
sequently, values around 7x7 = 49 bins are suitable for evaluation,
considering that ORD has not decayed and the other two features are
reaching convergence.

6.3. Pose estimation evaluation

Fig. 5 assesses the general body pose estimation accuracy. Results
are extracted considering the best configuration for the detector (i.e.
49 histogram bins in the ORD feature, w = 0.5 in Equation 1 and
50 random anchors in training). Fig. 5 shows the Precision, Recall
and F-measure for each individual gesture. In general the system

achieves a mean F-measure of 0.87 for the classification of the 10
body poses of the dataset.

Table 1 shows the average Euclidean distance between the esti-
mated joint position of the proposed method and the groundtruth for
the UPC dataset.

In Fig. 6, we also compare the proposed collaborative voting
framework with the approach in [11] on the Stanford dataset. The
work in [11] is more specific to the human body, and incorporates
a 3D body model. On the contrary, our proposal does not exploit
a body model, and would be generic enough for pose detection in
other articulated objects or beings. Moreover, the Stanford dataset
is composed of 28 different sequences, which makes it difficult to
find training examples similar to the test ones, since we are using the
complementary sequences as training for a given test sequence.

The work in [11] obtains an average error of 7.3 cm while our
method obtains an average error of about 9.7 cm. Despite this in-
convenient setup, the proposed Voting approach manages to select
appropriate training templates, achieving good classification results
with a generalized object parts detector.

7. CONCLUSIONS

After testing our proposed solution with the best configuration found
we achieve a 0.87 F-score average on body gesture classification and
an average articulation error of 9.7 cm on body skeleton estimation.

These results are competitive to current state-of-the-art tech-
niques. Taking into account that the Collaborative Voting frame-
work introduced in this paper exhibits a generic behavior and could
be applied directly to other detection problems, we consider that the
obtained results contribute positively in this scenario.

Furthermore, the proposed technique is able to estimate, at the
same time, both the full body pose and the position of the body skele-
ton. As future work, we are investigating the use of the Collaborative
Voting framework in other applications, such as hand detection and
to incorporate other priors, such as color information, into the voting
framework.
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