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ABSTRACT�
Visual object counting (VOC) is important in many real-

world applications. Our previous work approximated 
sparsity-constrain example-based VOC (ASE-VOC) works 
well with insufficient training data. It assumes that image 
patches share the similar local geometry with counterpart 
density maps, and then the density map of the image patch 
can be estimated by preserving such geometry. However, 
ASE-VOC has a weak constraint for data structure and 
experiments reveal that the performance of ASE-VOC 
degrades when facing with complex background. To solve 
this problem, we proposed a novel local low-rank constrained 
example-based VOC (LLRE-VOC) method. Because local 
low-rank constraint can choose the samples belonging to the 
subspace that lies closest to the test samples. Even with 
complicated data structure, LLRE-VOC can guarantee the 
patches selected share similar structure with input patch. 
Extensive experiments conducted on public benchmarks 
demonstrate the superior performance of our proposed 
LLRE-VOC method. 

Index Terms Visual object counting, complex 
background, local low-rank, density map estimation, 
example-based

1.�INTRODUCTION�
The task of Visual Object Counting (VOC) is to label an 
image with the exact object counts. In recent years, it has been 
widely applied in fields such as crowd analysis[2, 5-7], city 
resource management[8], public security[9] and wildlife 
census[10]. VOC has shown its great value in computer 
vision. 

There are primarily two mainstream types of object 
counting techniques in a supervised way: one is based on 
global regression  [2, 5-7, 11] and the other is density 
estimation  [1, 3, 12, 13]. For global regression based method 
(GR-VOC), they learn an intrinsic mapping between image 
global features and their corresponding counts (in scalar 
form). These methods discard the location information of the 
objects. Moreover, the performance of GR-VOC depends on 
the well-design of feature heavily.  

Compared with GR-VOC method, density map estimation 
based method (DE-VOC) takes full advantage of the spatial 
information and can provide object distribution information. 

The main idea of the DE-VOC method is firstly proposed by 
Lempitsky who estimates a density function as a real function 
of pixels in an image regressed from dense local features of 
the image [1]. 
algorithms [3, 12, 13] have been proposed to handle with 
different application scenes. Among those application scenes, 
how to deal with the insufficient training data is a tough 
problem.  

In our previous work example based VOC (E-VOC) [3], 
we find that patches extracted from images share the similar 
local geometry with their corresponding patches extracted 
from counterpart generated density maps, therefore, by 
preserving such local geometry, the object density map can 
be reconstructed. E-VOC can work well with a few training 
images, but its result is unstable due to the effect of 
neighborhood size. To overcome this disadvantage, we 
introduce a sparsity constraint in our extended version which 
is called approximated sparsity-constrain example-based 
VOC (ASE-VOC). Experimental results show that ASE-
VOC is able to give a good result when the background is 
clean or the foreground can be extracted. However, it is a 
challenge work to extract the foreground especially when the 
training data is insufficient (for example there is only one 
image). In this paper, we address the VOC problem for 
complex scenes with insufficient training data.  

 
Fig.� 1.� Conceptual Illustration of sample selection 
mechanisms. Patches filled with same colors are in the 
same subspace and have similar structure. (a) Sparsity 
constraint may select the patches in different subspace (b) 
LLRE constraint selects the patches in the closest 
subspace. 

(a) ASE-VOC (b) our LLRE-VOC
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As discussed above, our previous proposed ASE-VOC [3] 
utilizes the sparsity constrain which does not consider the 
underlying structure of the data. As a result, when the training 
images are of complex scenes, the sparse constrain can t 
guarantee the sample selected are in similar structure, which 
degrades the performance. In this paper, we proposed a novel 
Local Low-Rank constrained example based VOC (LLRE-
VOC). Instead of using sparse constraint, we exploit the 
property of local low-rank constraint for selection of samples. 
Work [14] shows that utilizing Locality-constrained Low 
Rank Coding (LLRC) in face recognition, the training 
samples used to reconstruct a given test sample can be chosen 
from just one class rather than a mixture of classes, thus 
enhances the classification accuracy. Motivated by it, we 
make an effort to apply local low-rank constrain to choose 
those samples that are in similar structure. Fig.1 shows the 
conceptual illustration of sample selection mechanisms in our 
proposed LLRE-VOC method and ASE-VOC method. 
Extensive experiments have been conducted to evaluate the 
performance of our proposed LLRE-VOC method on both 
simple and complex background datasets. Experimental 
results on public databases demonstrate the effectiveness of 
our proposed LLRE-VOC method. The flowchart of LLRE-
VOC is shown in Fig.2. 

The rest of paper is organized as follows. In next section, 
we will briefly introduce the general generation of density 
map. In section 3, we will give a description of the E-VOC 
problem formulation, followed by the presentation of our 
novel LLRE-VOC method. In Section 4, we will show the 
experimental results, and section 5 concludes our paper. 

2.�PRELIMINARIES�
As our method is based on object density estimation, here we 
will introduce the generation of the ground truth density map 
briefly. Following the work [1], we assume that a set of N 
training images I1, I2 IN are given. And for each training 
image Ii , the objects interested are annotated with a set of 2D 
points Pi = {�P1,  ,�Pc(i) }, where C(i) represents the number 
of objects which we are interested in image Ii. Therefore, we 
define the ground truth density function to be a kernel density 
estimate based on the provided points: 
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where P is a user-annotated dot and  is the smoothness 
parameter. In our paper,  we used here is set to be 6 in 

experiments.With the definition in Eqn. (1), the ground truth 
density map of training image  is defined as  
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With the density map, the object count can be computed 
by integrating over the density map 
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In our paper, the training image patches which are 
extracted from training images Ii,  are denoted 
as . And the density maps 

 of corresponding image patches are derived 
from ,  For all training patches in Y, the 
feature set can be represented as . 

3.�METHOD�
3.1.�Example­based�VOC�

In E-VOC, it supposes that the two manifolds formed by 
image patches and their density map patches, respectively, 
share similar local geometry. Such local geometry of a feature 
vector can be characterized by how the feature vector can be 
linearly reconstructed by its neighbors [15]. Given the feature 
of a test image patch xf, the reconstruction weights of 
neighbors in feature space Yf can be computed by minimizing 
the reconstruction error. Then we apply the reconstruction 
weights to the density maps of neighboring patches from Yd 
and obtain the density map xd. This kind of method which 
uses the generalization of examples is named as example-
base VOC (E-VOC) [3]. The formulation of E-VOC can be 
described as follows: 

 * 2
2arg min|| ||f Yx

w
w D w   (4) 

 *d dY *dYx w   (5) 
where DY is a training patch subset 
formed by the k nearest neighbors of  xf  from Yf . 

 and is the density map of . 
The Eqn.(4) computes the local geometry of xf and then 

Eqn. (5) reconstructs the density map xd by preserving the 
same local geometry. Due to the constrain with least square 
form, Eqn.(4) has an analytic solution and w can be calculated 
efficiently in Eqn.(6) 
 1=( )T T

Y Y Y fxw D D I D   (6) 

 
Fig.�2.�Flowchart of proposed LLRE-VOC method. Dashed and solid boxes represents data and operations, respectively. 
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Here the k nearest neighbors DY are searched by K-nearest-
neighbors (KNN) algorithm. 

3.2.�Our�proposed�Local�Low�Rank�Example­based�VOC�
(LLRE­VOC)�method�

E-VOC works well with a small training set as it estimates 
density over generalization training patches. However, the 
result is unstable due to the fact that E-VOC fixes the 
neighbors size [3].  To overcome this disadvantage, we add 
the sparse constrain in extended version (ASE-VOC) to 
choose samples automatically. The formulation is as follows: 

 * 2
2 1arg min || || || ||fw

w x w wYD   (7) 

Because ASE-VOC structure of examples 
into account, thus, it cannot guarantee the selected examples 
are in similar structure especially when the data structure is 
complicated (for example the complicated background). As 
the Fig. 3 shows, the chosen samples in ASE-VOC method 
do not keep the similar data structure. To improve the 
performance of complex background, examples in similar 
data structure are favorable for reconstruction. 

Recently, in face recognition, Locality-constrained Low 
Rank Coding (LLRC) [14] which chooses face images that 
belong to the same class that lies closest to the test face image 
by taking advantage of the low rank structure of data has 
achieved great success. Motivated by this, we introduce the 
local low-rank constrain into the E-VOC problem. And a 
novel local low-rank constrained example-based VOC 
(LLRE-VOC) method is proposed. The formulation of our 
proposed method is described as follows: 

* 2 2
2 1 * 2 2arg min|| || || ( )|| || ||fw

w x w diag w l w 2
2||Y YD D   (8) 

where denotes the weights over these k vectors, the 
matrix DYdiag(w) denotes the training sample used to 
reconstruct the input  and represents a vector which 
measures the exponential distance from xf to each training 
sample di. Therefore, li is given by 

exp || ||/i f il x d   (9) 

here, we normalize the value of l from 0 to 1. Parameter 1 
and 2 are the regularization coefficients for trading off the 
structural similarity and locality.  

For solving the optimization problem, we convert the Eqn. 
(8) to the following formulation: 
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Eqn. (10) can be solved by taking advantage of augmented 
lagrangian formulation. The detailed information about the 
solution of this model can refer to literatures [14, 16].  

4.�EXPERIMENTS�
In order to demonstrate the effectiveness of our proposed 
LLRE-VOC method, we conduct experiments on three public 
dataset including Bacterial cell dataset [1], Fly dataset [17] 
and Honeybee dataset [17]. Fig.3 shows the example frames 
of three datasets. To compare with different methods, mean 
absolute error (MAE) is employed as the evaluation metric. 

4.1.�Bacterial�cell�dataset�

The synthetic bacterial cell dataset [1] consists of 200 images 
with an average of 171 ± 64 cells per image. The resolution 
of each image is 256-by-256. Partial occlusion and image 
saturation exist in this dataset. Following the work [1], we 
only use the blue channel. Besides, the first 100 images used 
for training and the second 100 images for testing just as the 
same setting in [1]; the subset of N out of all training images 
is randomly selected. For each N (N =1,
experiments have been repeated for five times and the mean 
absolute errors and standard deviations are calculated. 

For our proposed LLRE-VOC method, the patch size is set 
to 4×4 both for training and testing, patch step is set to 2. The 
number of nearest neighbors k is set to 128.  

Table�1. Mean absolute errors (MAE) for cell counting 
Method Feature Validation N=1 N=2 N=4 N=8 N=16 N=32 
RR[2] (1) counting 67.3±25.2  37.7±14.0 16.7±3.1 8.8±1.5 6.4±0.7 5.9±0.5 

KRR[4] (1) counting 60.4±16.5 38.7±17.0 18.6±5.0 10.4±2.5 6.0±0.8 5.2±0.3 
detection[1] (2) counting 28.0±20.6 20.8±5.8 13.6±1.5 10.2±1.9 10.4±1.2 8.5±0.5 
detection[1] (2) detection 20.8±3.8 20.1±5.3 15.7±2.0 15.0±4.1 11.8±3.1 12.0±0.8 

Density learning[1] (1) MESA 9.5 6.1 6.3 1.2 4.9 0.6 4.9 0.7 3.8 0.2� 3.5 0.2�
E-VOC[3] (3) counting 20.5 11.8 5.5 1.1� 4.4 0.6 5.2 0.6 5.0 0.2 4.8 0.5 

ASE-VOC[3] (3) counting 8.1 3.6 5.9 0.9 4.9 1.1 4.8 0.7 3.9 0.3 3.6 0.1 
LLRE-VOC (3) counting 7.5 3.1� 5.8 0.8 4.8 0.7 4.1 0.3� 3.9 0.1 3.7 0.2 

(1) Dense SIFT+Bag of words; (2) Dense SIFT; (3) Raw data (extracted from blue channel) 

Table�2. Mean absolute errors (MAE) for fly counting 
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 The results are shown in Table 1. Compared with the 
classical detection based or GR-VOC methods, LLRE-VOC 
gives better results with no matter what the size of training 
samples is. method [1], our 
method offers more accurate estimation when training 
samples are insufficient, and provides competitive result 
when the size of training set grows. The mean absolute errors 
(MAE) produced by E-VOC (k is set to 5) method is unstable, 
which suddenly drops with N =4 and then rises with N =8 in 
Table 1, In comparison, our LLRE-VOC offers a more stable 
and accurate estimation. Compared with ASE-VOC, our 
method provides smaller mean absolute errors and standard 
deviations. Therefore, our proposed method has showed its 
superiority on benchmark dataset compared with existing 
mainstream methods.

4.2.�Fly�and�honeybee�datasets�

Paper [17] provides four public datasets including fly, 
honeybee, fish seagull for detection. To further evaluate the 
performance of our proposed method on clean and complex 
background, we choose the fly and honeybee datasets which 
own the clean and complex background respectively. It is 
noted that here used features are just raw data extracted 
grayscale images and patch step is set to 4. 
Fly�dataset: contains 600 frames with an average of 86 ± 

39 flies. The resolution of each frame is 648-by-72. 
Following the work [4], the first 32 images(1:6:187) are 
utilized for training and 50 images for testing(301:6:600).  

For detailed performance comparison on insufficient 
training dataset, in this experiment, we use first N (N = 

32) image for training respectively. Table 2 shows the 
results for fly dataset. From the table, we can find that both 
of our proposed method and ASE-VOC can achieve a 
satisfactory performance than density learning [1]. However, 
our LLRE-VOC method has a slight superiority over ASE-
VOC, and shows a big improvement than ASE-VOC 
especially when there is only 1 training sample. 
Honeybee�dataset: contains 118 images with an average 

of 28 ± 6 honeybees per image. The resolution of each image 
is 640-by-480. First 32 images are used for training and last 
50 images for testing. 

 To obtain the detailed performance comparison under 
complex background. We also use first N (N 
images for training respectively. The results are given in 
Fig.5. It is obvious that ASE-VOC performs badly under the 
complex background. However, our proposed method still 
performs well and our MAE is almost the half of ASE-VOC , 
which verifies the effectiveness of the proposed LLRE 
method with complex background. To validate the salient 
property of our method on patch selection, we visualize the 
patch selection result in Fig.3. The figure shows that our 
LLRE-VOC method choose those patches with similar 
structure. However, in ASE-VOC method, some dissimilar 
patches are chosen. As a conclusion, our proposed LLRE-
VOC method is suitable for visual object counting with 
complex background. 

5.�CONCLUSION�
This paper introduces a novel local low-rank constrained 
example based VOC method for estimating the object count 
which achieves a better performance than existing algorithms 
even with a complex background. This is because we take 
advantage of local low-rank constrain to choose samples just 
from one subspace rather than mixed subspaces at the 
reconstruction stage, which enhances the performance. 
Extensive experiments conducted on public datasets validate 
the effectiveness of our method regardless of the insufficient 
data or complex background. 
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Fig.�5. Mean absolute errors (MAE) for honeybee counting 

 
Fig.�3. The selection result for the input test patch. The 
numbers indicate the index of sample. The patches in red 
and green boxes are selected training samples. 
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Fig.� 4.�Examples of three public datasets. a) synthetic 
cells b) honeybees c) flies 
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