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ABSTRACT 

 
Road detection is a key component of Advanced Driving 
Assistance Systems, which provides valid space and 
candidate regions of objects for vehicles. Mainstream road 
detection methods have focused on extracting discriminative 
features. In this paper, we propose a robust feature fusion 
framework, called “Feature++”, which is combined with 
superpixel feature and 3D feature extracted from stereo 
images. Then a neural network classifier is been trained to 
decide whether a superpixel is road region or not. Finally, 
the classified results are further refined by conditional 
random field. Experiments conducted on the KITTI ROAD 
benchmark show that the proposed “Feature++” method 
outperforms most manually designed features, and are 
comparable with state-of-the-art methods that based on deep 
learning architecture.   
 

Index Terms— Road detection, Kernel descriptors, 
Gabor, Multi-feature fusion, Conditional Random Field 
 

1. INTRODUCTION 
 
Advanced Driving Assistance Systems (ADAS) have been 
receiving considerable attention over the past few years, due 
to the potential improvement of traffic efficiency and human 
safety. In the pipeline of ADAS, road detection plays an 
important role. Current road detection methods are based on 
different sensors, such as monocular camera, stereo camera, 
laser range finders or fusion of them.  

Among the sensors mentioned before, monocular camera 
is the cheapest while the visible image provides rich color 
information. As for monocular road feature descriptor, low 
level cues have been widely used, such as illumination 
invariant intrinsic images [1][2], combination of color 
planes and texture [3]; In order to improve the performance 
under the situation of unmarked road, spatial ray feature [6] 
and contextual feature[7] are proposed; Noteworthy that 
state-of-the-art methods use Convolutional Neural Networks 
for feature learning such as [8]. Compared to manually 
designed features, learned features are more discriminative 
while requiring more computational cost. As for classifier, 
traditional machine learning methods, such as, SVM [9], 

  *Corresponding author. 

Gaussian mixture model [10], boosting [11] and Artificial 
Neural Network [12] have been used in road detection task. 
When the 2D feature is not discriminative between road and 
non-road areas such as the similarly paved side-walks and 
road, detection may fail. Besides, due to the lack of 3D 
information, monocular based methods are sensible to 
illumination conditions such as shadows, and back-lighting.  

LIDARs based road detection methods generally analyze 
the 3D scene and take the plat areas as road candidate. For 
instance, Thrun [13] proposes a min-max elevation map, 
Moosmann [14] uses a local convexity criterion, and Chen 
[15] uses Gaussian Process Regression in the polar grid map 
to detect road. However, due to lacking of color and texture 
information, it cannot distinguish the road and non-road 
areas which have little difference in height. Moreover, the 
point clouds are always too sparse for segmenting road area.  

Among all sensors, stereo camera, which is at an 
affordable price while covers the virtues of monocular 
cameras and LIDARs, is mainly concerned in recent 
researches [16][17]. As for stereo based road detection 
approaches, the disparity or the 3D information are usually 
employed, such as the V-disparity [18] map, stochastic 
occupancy grid [19], digital elevation map [20], and cubic 
B-spline curve fitting [21]. Since the stereo matching would 
get error more or less, direct use of the disparity and 3D 
information may lead to unreliable results. To reduce the 
influence of stereo error, Berneshawi [22] combines simple 
2D and 3D information to segment the road area. However, 
the simple color statistic cannot represent texture 
information well. In addition, the simple 2D and 3D statistic 
would cause accuracy loss. 

In this paper, motivated by NNP framework [22], we try 
to process multi-feature fusion to acquire more appropriate 
road feature. We partition the image into superpixels, and 
road features are extracted from these segments to learn a 
three-layer artificial neural network (ANN) as road classifier. 
Then conditional random field (CRF) is used to refine the 
classified results. In the proposed framework, we find that 
the Gabor feature [23] is particularly appropriate for texture 
representation and discrimination. Moreover, the kernel 
descriptors [24] provide a unified framework to turn pixel 
attributes into patch-level features with low loss of accuracy. 
Therefore, we fuse the Gabor feature, kernel descriptors, 
some other simple color and 3D spatial information for road 
detection task.  
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2. PROPOSED METHOD 

 
The pipeline of our method is depicted as Fig. 1.  Firstly, we 
use the method [25] which jointly processes image 
segmentation and stereo matching to partition the segment 
image into superpixels and get disparity map. Secondly, 2D 
and 3D road features, such as Gabor feature, Kernel 
descriptors, and 3D spatial information, have been 
combined as the descriptor of superpixels. Then we perform 
multi-feature fusion via ANN classifier. Due to the fact that 
ANN classifier does not take the contextual information into 
consideration, we use CRF [26] to refine the output of the 
classifier. 
 
2.1. Multi-feature fusion 
 
In order to better reflect the synergies of our 2D and 3D 
features, we following the idea of [28], which recommends 
that features can be fused in the early stage. Feature vectors 
extracted from both 2D and 3D information are combined as 
the input of the ANN classifier: 

𝑣𝑓𝑢𝑠𝑖𝑜𝑛 = (𝑣2𝐷 , 𝑣3𝐷)                        (1) 
Where 𝑣2𝐷 and 𝑣3𝐷  are 2D and 3D features extracted from 
superpixel and depth maps, respectively. Typical 2D 
features are Gabor feature, gradient kernel descriptor, and 
3D features include spin kernel descriptors, plane feature, 
depth gradient kernel descriptors, etc. In order to choose an 
appropriate cross feature fusion strategy, we first evaluate 
the efficiency of 2D and 3D features independently. Then 
selectively choose the 2D combination and 3D combination 
for accuracy evaluation. The detail of feature selection and 
combination will be shown in the section of experiments. 

As for Gabor transform [23], which extracts feature with 
different frequencies and orientation, it is particularly 
appropriate for texture representation. Therefore, in the road 
detection task, we define 32 Gabor filters for image 
convolution: 4 frequencies and 8 orientations each 
frequency. Each pixel gets 32 Gabor results and then we 
average them over superpixel to get a 32-dimensional vector 
as road feature.  

As for Kernel descriptors (KDES) [24], it proposes a 
unified framework, which turns pixel attributes into patch-
level features in the kernel view with low loss of accuracy. 
For road detection task, since gradient, color, depth gradient, 
and spin cover the image variations, appearance, depth 
variations, and surface normal information respectively, we 
then evaluate four KDES, including gradient (GKDES) [24], 
color (RGBKDES) [24], depth gradient (DGKDES) [24], 
and spin (SPINKDES) [27]. We average each KDES over 
superpixel as road feature.  
 
2.2. ANN for cross feature classification 
 
Note that the fused feature includes 2D and 3D information. 
It’s fairly challenging to trade off the importance of each  
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Fig.1. The pipeline of the proposed road detection algorithm 
 
dimension in a vector. Since artificial neural network has the 
advantages of adaptability and generalization, it is an 
efficient tool for feature fusion and classification. In the 
proposed method, we use a three-layer network, which 
consists of the input, hidden and output layers. In our 
experiments, we set the number of hidden layer neurons 
equal to the dimension of input feature. Moreover, in order 
to show the feasibility of the proposed ANN strategy, we 
also compare the performance of ANN with SVM in the 
section 3. The prediction is given as the following equation: 

𝑝�𝑣𝑓𝑢𝑠𝑖𝑜𝑛� = 𝜎(𝜔𝑜𝜎(𝜔ℎ ∙ 𝑣𝑓𝑢𝑠𝑖𝑜𝑛))          (2) 
where 𝑣𝑓𝑢𝑠𝑖𝑜𝑛 is the input feature, 𝜔𝑜 and 𝜔ℎ are the weight 
matrices of the output and hidden layer respectively, and σ 
is the sigmoid function. The predicted probabilities 
represent the road confidences and CRF will take these 
confidences as input.  
 
2.3. CRF for road detection 
 
CRF is an efficient tool for multi-class image segmentation 
and labeling [29]. Note that road detection is a two-class 
(road and non-road) labeling problem. We can use a fully 
connected CRF model [26] to refine the classified results. 
Consider a random field  𝐼 defined over variables {𝐼1,⋯ , 𝐼𝑁}, 
where N is the size of input image and 𝐼𝑗 is the color vector 
of pixel j. Similarly, consider 𝑋  defined over variables 
{𝑋1,⋯ ,𝑋𝑁}, where 𝑋𝑗 is the road label assigned to pixel j. 
Then the posterior probability of the overall labeling given 
the observed image I can be expressed as: 

𝑃(𝑋|𝐼) = 1
𝑍(𝐼)

𝑒𝑥𝑝 �−∑ 𝜙𝑐(𝑋𝑐|𝐼)𝑐∈𝐶𝜍 �          (3) 
where 𝐶𝜍 is the set of all cliques, 𝜙c is the potential function 
of clique c, and 𝑍  is used to normalize. Then the most 
probable road label of image I can be written as: 

𝑥∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 − 𝑙𝑜𝑔�𝑃(𝑋|𝐼)� = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝐸(𝑥)       (4) 
in which 𝐸(𝑥) is the corresponding Gibbs energy: 

𝐸(𝑥) = ∑ 𝜓𝑢(𝑥𝑖)𝑖 + ∑ 𝜓𝑝(𝑥𝑖 , 𝑥𝑗)𝑖<𝑗             (5) 
The unary potential 𝜓𝑢(𝑥𝑖) takes the negative log-likelihood 
of the road confidence in the pixel i which is predicted by 
learned ANN. The pairwise potentials use the form as: 

𝜓𝑝�𝑥𝑖 , 𝑥𝑗� = 𝜇(𝑥𝑖 , 𝑥𝑗)𝑘(𝑓𝑖 , 𝑓𝑗)                    (6) 
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(a) 2D features (b) Combination of 2D features 

Fig.2. Evaluation of 2D features. 
 
where 𝜇�𝑥𝑖 , 𝑥𝑗� = [𝑥𝑖 ≠ 𝑥𝑗] and 𝑘(𝑓𝑖 , 𝑓𝑗) is defined by 
the color vectors 𝐼𝑖 ,  𝐼𝑗 and position 𝑝𝑖 ,  𝑝𝑗: 

𝑘�𝑓𝑖 , 𝑓𝑗� = 𝜔(1)𝑒𝑥𝑝 �−
�𝑝𝑖 − 𝑝𝑗�

2

2𝜃𝛼2
−
�𝐼𝑖 − 𝐼𝑗�

2

2𝜃𝛽2
� 

+𝜔(2)𝑒𝑥𝑝 �−
�𝑝𝑖−𝑝𝑗�

2

2𝜃𝛾2
�  (7) 

in which 𝜔  are linear combination weights and 𝜃  are 
parameters controlling the degrees of pixel nearness and 
similarity. As for our road detection method, we set 𝜔(1) 
and 𝜔(2) as 10,  𝜃𝛾 as [5, 5],  𝜃𝛼 as [90, 90], and 𝜃𝛽 as [5, 5, 
5]. In the equation (7), the first part helps nearby pixels with 
similar color be likely in the same class, and the latter part 
helps remove small isolated regions. We evaluate the 
necessity of CRF in the experiments section. 
 

3. EXPERIMENTS 
 
3.1. Datasets  
 
We use the KITTI ROAD benchmark [30] to evaluate our 
approach. It contains 289 annotated image pairs for training 
and 290 pairs for testing. Both sets consist of three 
categories of road scenes: urban unmarked (UU), urban 
marked (UM), and urban multiple marked lanes (UMM). 
We do not make distinction between the three categories. 
Methods are ranked according to the pixel-wise maximum 
F-measure on the Bird’s-eye view (BEV) space. To select 
the most adequate parameters and evaluate the different 
feature fusion strategies, we divide the training set into two 
sets: 216 image pairs for training and 73 for validation. 
 
3.2. Features Evaluation 
 
We first evaluate the 2D and 3D features respectively, then 
selectively fuse them to get the best feature fusion. 

The 2D features we use include RGB, Gabor, GKDES, 
and RGBKDES, where RGB represents the mean and 
standard deviation of each channel. We compare the 
representation ability of them, and as shown in Fig. 2(a), 
RGBKDES is the most discriminative for road. In addition, 
due to that RGBKDES and RGB represent color information, 
Gabor feature provides texture and GKDES describes 
gradient, according to the characteristics of the road, we  

  
(a) 3D features (b) Combination of 3D features 

Fig.3. Evaluation of 3D features 
 
process them with different combination. As shown in Fig. 
2(b), we compare four combinations: “RGB + Gabor”, 
“RGBKDES + GKDES”, “RGBKDES + Gabor” and “RGB 
+ Gabor + GKDES”. The results show that the “RGB + 
Gabor + GKDES” performs the best.  

The 3D features we choose to evaluate consist of Plane, 
SPINKDES, DGKDES, and Pos3D. The Plane represents 
the angles and inliers percentage of plane which is fitted in a 
superpixel, and Pos3D is the mean and deviation of 3 
coordinates. As can be seen in the Fig. 3 (a), Pos3D is the 
most discriminative for road. As we all know that both 
SPINKDES and Plane represent the angle information, and 
SPINKDES computes more details. Due to that the 3D 
information which gotten by stereo matching would have 
some error more or less, the SPINKDES, more affected by 
stereo noise,  performs not as well as Plane. Moreover, 
according to that both Pos3D and DGKDES represent the 
information of 3D position changes, we process two fusions 
for road: “DGKDES + Plane” and “Pos3D + Plane”. As 
shown in Fig. 3(b), “Pos3D + Plane” performs better. 

Finally, we fuse the 2D and 3D features to put them work 
together. According to the above experiments, as shown in 
Fig. 4, we evaluate three combinations: “RGBKDES + 
Gabor + DGKDES + Plane”, “RGB + Gabor + GKDES + 
Pos3D + Plane” and “RGB + Gabor + Pos3D + Plane”. We 
select the best feature fusion “RGB + Gabor + GKDES + 
Pos3D + Plane” as our road feature. In addition, as shown in 
Fig. 4, in accordance with the comparison of monocular 
(“RGB + Gabor + GKDES”) and stereo performance, we 
can see the importance for the use of stereo information. 
 
3.3. Classifier evaluation 
  
We also evaluate how the classifier affects the performance. 
For this purpose, we assess a SVM classifier as comparison 
using the LIBSVM library. The SVM type is set as “C-SVC” 
and the kernel function is RBF (radial basis function). Fig. 5 
shows that ANN outperforms SVM in our method. 
 
3.4. Benchmark Submission 
 
We submit the results of our method, which uses the “RGB 
+ Gabor + GKDES + Pos3D + Plane” as road feature and 
ANN as the classifier, to the KITTI-ROAD Benchmark. To 
verify the necessity of the CRF post-process, as shown in  
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Fig. 4.  Evaluation of 2D and 

3D feature fusions 
Fig. 5.  Evaluation of SVM and 

ANN 
 
the Table 1, we submit two results: without CRF and with 
CRF. The CRF can help the performance improve 2-3%. 

Moreover, we compare the results of three road scenes. 
We know that the most unmarked roads are in the rural 
areas and the surrounded environments are relatively 
complex. Trees and buildings on both sides of the narrow 
road usually cast shadows which would disturb the detection. 
Therefore, as can be seen in Table 1, the performance in 
unmarked roads is not as good as in marked roads.  

Table 2 shows the comparison of our method with others. 
BL [30] provides a low bound for the performance that any 
road detection algorithm should achieve; CB [7] proposes a 
contextual feature; SRF [31] presents a structured random 
forest-based road detection algorithm. BL, CB and SRF are 
monocular based; FusedCRF [11] fuses the LIDAR and 
monocular image to detect road; NNP, which is based on 
stereo, is basic framework of our method. We can see that 
our method performs the best. Fig. 6 shows a visual 
comparison of our method, NNP, and FusedCRF.  
 

4. CONCLUSIONS 
 
In this paper, we have proposed a robust feature for road 
detection, which selectively fuses the Gabor, kernel 
descriptors, simple color and 3D spatial information. 
Meanwhile, we have evaluated each component of our 
system. Experiments show that our method outperforms the  

Table 1:  Results [%] of our method with or without CRF on 
the KITTI Road testing dataset. 
 

With CRF 
Benchmark MaxF AP PRE REC FPR FNR 
UMM_ROAD 93.55 92.34 92.77 94.34 8.08 5.66 
UM_ROAD 90.43 88.83 89.63 91.26 4.81 8.74 
UU_ROAD 87.40 85.48 86.19 88.64 4.63 11.36 
URBAN_ROAD 91.12 89.51 90.16 92.10 5.54 7.90 

Without CRF 
URBAN_ROAD 89.48 90.45 87.74 91.28 7.02 8.72 
 
Table 2:  Methods results [%] comparison on the KITTI 
Road Benchmark  
 

URBAN – BEV space 
Method MaxF AP PRE REC FPR FNR 
Feature++ 91.12  89.51  90.16  92.10  5.54  7.90  
NNP[22] 89.68  86.50  89.67  89.68  5.69  10.32  
CB[7] 88.97  79.69  89.50  88.44  5.71  11.56  
FusedCRF[11] 88.25  79.24  83.62  93.44  10.08  6.56  
SRF[31] 82.44 87.37 80.60 84.36 11.18 15.64 
BL[30] 75.89  79.28  71.56  80.77  5.65  19.23  

 
most of methods which use the manually designed features 
on the KITTI ROAD benchmark. 

However, Illumination conditions usually affect the 
performance, especially in unmarked road scenes. In our 
future works, illumination invariant features would be 
included in the road feature fusion and used in the pairwise 
potentials of CRF.  
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Fig.6. Sample results in the perspective image. Red denotes false negatives, blue areas correspond to false positives and 
green represents true positives (Top to bottom : Ours, NNP, FusedCRF. Left to right: UM, UMM, UU) 
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