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ABSTRACT

Synthetic Aperture Radar (SAR) has over the years evolved
to be one of the most promising remote sensing modalities
for large-scale monitoring of the ocean and maritime activity.
The detection of ships at sea in SAR imagery is a challenging
task, as it requires the detection of small targets with little ex-
ploitable spatial information within a high resolution image.
We present a novel method for the detection of ships based
on superpixel segmentation and subsequent statistical charac-
terisation, with no prior land masking. Our method acts as
a bound to a CFAR detector, greatly reducing false positives.
We present results on SENTINEL-1 imagery, demonstrating
the detection performance of our algorithm.

Index Terms— Synthetic Aperture Radar, Superpixels,
CFAR, Detection

1. INTRODUCTION

Synthetic Aperture Radar has proven to be an excellent re-
mote sensing modality for a plethora of monitoring tasks, in-
cluding the monitoring of maritime activity and the detection
of ships at sea. This is generally a rather complicated task as
ships tend to appear as extremely small targets within high-
resolution SAR images, providing little shape information to
work with. The significant clutter and speckle noise present
in SAR images further complicates this detection task.

As a general rule, ships at sea appear as bright targets as
the radar cross section (RCS) of a ship is much higher than
that of sea clutter. This is due to the large number of radar
wave bounces caused by the ship’s metal superstructure (com-
pared to the sea surface) [1]. Detection via an appropriate
RCS threshold is thus possible in cases where the sea clutter
is very homogeneous, as is often the case with low-resolution
SAR data.

Modern high-resolution SAR platforms (like TerraSAR-
X and SENTINEL-1) are capable of distinguishing sea waves,
ship wake and other clutter, causing sea clutter to appear more
heterogeneous in high resolution data and thus complicating
the detection task. The presence of distinguishable sidelobes
in azimuth and range can also potentially cause multiple areas
of bright and dark texture, leading to multiple detections for a
single target [2].

Most approaches proposed in the literature are centred

around the use of a Constant False Alarm Rate (CFAR) detec-
tor and variants thereof. The standard cell-averaging CFAR
detector estimates the level of noise around a pixel of inter-
est by calculating the average power level in a neighbourhood
around the pixel of interest, while exempting those in a band
directly around it (guard cells).

Various methods like cell averaging CFAR, Greatest-of-
CFAR, excision-switching-context CFAR [3] [4] and two-
parameter CFAR [1] have been employed to varying success.
Sea clutter has been modelled using a number of distribu-
tions, such as the Gaussian for the default CFAR case and
more recently heavy tailed distributions like the Weibull,
K-distribution [5] and Alpha-stable distribution [6].

Hybrid approaches include Meyer’s fusion of CFAR de-
tectors and wavelet analysis [7] as well as Wang’s method of
fast block CFAR combined with feature analysis [2]. Leng et
al. [8] employ a bilateral CFAR algorithm acting on a com-
bination of the intensity and spatial distribution of the image,
while Hou et al. [9] use an iterative Log-normal CFAR com-
bined with background subtraction at each stage.

Most methods cannot distinguish between land and sea re-
gions within the SAR image. It is assumed that any land cover
present in the image is segmented out prior to ship detection,
and even then false detections at the water-land interface are
possible due to inaccuracies in the land masking process, the
presence of docks and similar structures etc. [2].

We here propose a two stage algorithm combining super-
pixel regions of interest with a CFAR detector. After pro-
ducing a superpixel segmentation of the image, our proposed
method makes use of statistical moments such as range, devi-
ation and kurtosis to identify possible ship targets contained
within superpixels across the SAR image. By combining the
above measures with the Hartigan dip test for bimodality our
algorithm is also able to distinguish between land and sea
coverage, hence no longer necessitating land masking prior
to ship detection. The regions of interest produced by this
first stage act as a bound for the CFAR detector, leading to
accurate detection of ship targets while greatly reducing the
number of false positives.

The paper is organised as follows: Section 2 provides a
brief introduction to superpixels and CFAR detectors. The
proposed method is outlined in Section 3 with results using
SENTINEL-1 data and discussion on performance found in
Section 4, followed by a brief conclusion and future work.
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2. BACKGROUND INFORMATION

2.1. Superpixel Segmentation

Superpixels have emerged as a form of over-segmentation
meant to provide clusters of perceptually similar pixels
throughout an image, thus capturing the redundancy inherent
in most natural images.

Various superpixel methods have been proposed in the lit-
erature and consequently employed as a convenient primitive
for further image processing tasks, with applications includ-
ing image and video segmentation [10] [11], object localisa-
tion [12] and tracking [13].

The results of the various existing superpixel algorithms
can vary in segmentation quality, superpixel uniformity, size
and number, partly due to the lack of a consistent, rigorous
definition of what constitutes a superpixel. One of the most
widely used algorithms, proposed by Achanta et al. is Simple
Linear Iterative Clustering (SLIC) [10]. SLIC segments an
image according to a 5-dimensional distance metric com-
prised of spatial (x,y coordinates) and colour information
(L,a,b, of the CIELAB colorspace) as shown in the following
equations. The iterative clustering process of SLIC is similar
in philosophy to k-means clustering [10].

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2 (1)

dxy =
√

(xk − xi)2 + (yk − yi)2 (2)

Ds = dlab +
m

S
dxy (3)

The number of generated superpixels k (and indirectly,
the size of those) is specified by the user. As the spatial com-
ponent of the metric can dominate the end result when dealing
with large superpixels (due to high image resolution or low k),
a scaling factor is introduced as m

S , where S is the initial clus-
ter seed grid interval (dependent on image size and desired k)
and m allows the user to control superpixel compactness and
shape regularity.

Advantages of SLIC superpixels include high perceptual
homogeneity within each superpixel, uniformity in size and
shape, computational simplicity and a degree of user control
over the process. They perform very well in terms of standard
boundary recall and under-segmentation error measures and
can cope with both colour and grayscale imagery [10].

2.2. Constant False Alarm Rate Detector

A typical CFAR detector relies on the comparison of a pixel of
interest (or cell-under-test in radar terminology) against its lo-
cal background, with the exemption of a guard band of imme-
diately surrounding pixels, as they may also form part of the
target. Assuming a distribution model fpdf (x) for the back-
ground, the probability of false alarm for a given threshold T

Fig. 1. Example of SAR superpixels. Sea region visible along
with superpixel containing a ship target and noticeable ship
wake.

is given by:

PFA = 1 −
∫ T

−∞
fpdf (x)dx =

∫ ∞
T

fpdf (x)dx (4)

Sea clutter in SAR data has been modelled sucessfully
with a variety of distributions, including the log-normal dis-
tribution [9], the alpha-stable distribution [3], the Weibull and
the K-distribution [5]. We have opted to use the Weibull dis-
tribution in this paper, the PDF of which is given by the fol-
lowing equation:

fpdf (x) =
C

B

( x

B

)C−1
exp

{
−
( x

B

)C}
;x ≥ 0 (5)

where B and C are the scale and shape parameter of the
Weibull distribution respectively.

After obtaining estimates B̂ and Ĉ we can express the
probability of false alarm in relation to threshold Th as [5]:

PFA = exp

[
−
(
Th

B̂

)Ĉ
]

(6)

where the threshold value Th can be derived from (6) for any
desired PFA (a typical value being 0.001).

3. PROPOSED ALGORITHM

The image is initially segmented into SLIC superpixels whose
size is significantly larger than that of any expected targets.
Any ship targets are thus contained, along with their immedi-
ate sea region, into a larger superpixel (Fig. 1) [14].

Most superpixels contain pixels of similar intensity values
and thus have relatively flat histograms. This uniformity is
disrupted in the presence of a target, manifesting itself as a
collection of extremely bright pixels (in comparison to the
sea that typically registers dark values).
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Fig. 2. (a) SENTINEL-1 Image 2, showing ship traffic off the
coast of the Isle of Wight. (b) Land masking via Hartigan’s
dip. (c) Histogram of dip values across image. Note H-dip
values throughout the image are scattered around two central
values, roughly corresponding to the portions of land and sea
mass in the image.

In the context of remote sensing SAR imagery, superpix-
els typically fall into one of three content categories: super-
pixels containing land mass, sea mass and superpixels con-
taining sea along with a smaller foreign object (such as a
ship).

Firstly, the distinction between a superpixel containing
only sea and one containing a ship at sea needs to be for-
mulated; examples of both can be seen in Fig. 1. Sea re-
gions typically appear as uniform, homogeneous dark regions
in SAR imagery due to the low RCS of the sea. In the case of
modern high-resolution SAR systems waves, ship wake and
bright clutter can become distinct to certain extent. A ship
target however, producing a much higher RCS, appears much
brighter. A superpixel containing a target would then display
a comparatively heavy-tailed histogram and much higher sta-
tistical dispersion than a predominantly dark superpixel.

This behaviour of a target superpixel is reflected in statis-
tical moments such as range and standard deviation, as well
as in measures indicating heavy tails such as sample kurto-
sis (Equation 7). Other possible indicators of leptokurtocity
include distance skewness [16] as well as General Likelihood
Ratio Tests comparing between a platykurtic and a leptokurtic
distribution [14].

g2 =
m4

m2
2

=

1
n

n∑
i=1

(xi − x̄)4

( 1
n

n∑
i=1

(xi − x̄)2)2
(7)

Our proposed algorithm utilises an additional metric to
detect (and discard) superpixels containing land mass, thus
no longer necessitating land masking prior to detection. Land
in SAR imagery appears far more heterogeneous than sea and
contains a plethora of intensity values across a large range.
This is intuitively supported by the fact that a typical land seg-
ment would provide diverse and numerous scatterers in the
form of geographical features, elevations, man made struc-
tures, vegetation etc.

Hartigan’s Dip [15] is a metric for determining whether
a set of data follows an unimodal or bimodal distribution. It
measures bimodality in a sample by the maximum difference
between the empirical distribution function and the unimodal
distribution function that minimises said maximum difference
(usually a uniform distribution). Lower values of the dip met-
ric indicate unimodality and vice versa.

Land segments, containing a good spread of intensity val-
ues can easily be modelled by a unimodal distribution and
produce low values of the dip metric. Sea segments however,
containing either a target ship or just intrinsic noise (system
noise, speckle, wave-induced scatterers) provide histograms
that appear highly leptokurtic or distinctly bimodal, this be-
ing reflected in their dip scores. A thresholding operation can
thus differentiate land from sea using this metric (Figure 2).

Superpixels are selected as regions containing a possible
target via a thresholding operation. The threshold for each
metric is set as the average observed throughout the image;
this can be considered a safe, conservative option as the ma-
jority of superpixels throughout the image are largely uni-
form, dominating the resulting global averages. Anomalous
superpixels containing a ship are effectively guaranteed to
present range, deviation, kurtosis etc scores higher than the
average.

After the superpixel detection stage we perform CFAR de-
tection over the image, using the Weibull distribution which
has been shown to be a good fit for SAR sea clutter [5]. The
detections returned by the CFAR detector are bound by the
superpixel mask, i.e. a detection is only considered valid if
it lies within one of the superpixels detected in the previous
stage.

4. RESULTS

We present results of our algorithm on four SAR images
from the SENTINEL-1 platform. The instrument is a C-band
Synthetic Aperture Radar operating in Interferometric Wide
Swath mode (VH polarised), acquiring data in a 250km swath
at a spatial resolution of 5m x 20m.

The area depicted is part of the English Channel. As there
is no ground truth available for the visible sea traffic, it has
been evaluated visually using direct ship radar return signa-
tures as well as transverse and turbulent ship wake, in ac-
cordance with the information and guidelines provided in the
SAR Marine User’s Manual [17].
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Fig. 3. (a) SENTINEL-1 Image 1. (b) Detection of superpix-
els containing possible ships at sea. (c) Weibull CFAR and
(d) CFAR combined with superpixel mask. Hartigan’s Dip
threshold at 0.01.

The SENTINEL-1 images (1670 x 2619) have been seg-
mented into k = 1600 SLIC superpixels. This k value was
chosen after visual inspection of the images; the approach
however is fairly robust to superpixel size and produces com-
parable results for other superpixel sizes (e.g. k = 1200, k =
2000). The superpixel compactness value m was set to 25,
again not critical to the current application.

We opt to use one statistical measure describing dis-
persion (range) and one for leptokurtosis (sample kurtosis).
Thresholds for both have been set at the global superpixel
average while the Weibull CFAR PFA is set at 0.001. Thresh-
olds for the Hartigan dip can be varied according to the degree
of seclusion of land data required; for the data presented in
this paper this threshold has been set at 0.01. This has been
found to correlate well to the SENTINEL-1 data under ques-
tion, as seen in Figure 2. For completeness, we demonstrate
the effect of an increased Hdip threshold in Figure 4.

The image shown in Figure 3 contains 5 sea vessels as
well as a portion of land mass in the lower left corner. The
algorithm is able to detect all 5 targets, contained over 6 su-
perpixels throughout the image. Figure 4 shows heavy ship
traffic (17 vessels) off the coast of the Isle of Wight. To
demonstrate the effect of Hartigan’s Dip on the superpixel
mask we show results for both Hdip = 0.01 and Hdip = 0.02.
In the first case, the low threshold leads to the detection of
some superpixels along the coastline, in turn allowing for
some CFAR detections in that area. Increasing the threshold
greatly reduces these false positives but can eventually lead
to the introduction of false negatives (missed targets). The re-
duction of false positives compared to normal CFAR for four
SENTINEL-1 images can be seen in Table 1.

For the majority of test cases the proposed detector does
not produce any false negatives, having all targets present in

(a) (b)

(c) (d)

(e) (f)

Fig. 4. (a) SENTINEL-1 Image 2. (b) Weibull CFAR. Super-
pixel mask for (c) Hdip = 0.01 and (d) Hdip = 0.02. Com-
bined CFAR and Superpixel detection for (e) Hdip = 0.01
and (f) Hdip = 0.02.

the image retained by the superpixel mask and subsequently
detected by CFAR. This is often not the case with other meth-
ods, such as CA-CFAR which has been shown to miss targets
in the presence of strong sea clutter [4] or the detector com-
pleteness of 72% in [7].

Dataset Weibull CFAR Proposed Method Ships Detected
Image 1 91445 1251 5/5
Image 2A 133247 2495 17/17
Image 2B 133247 1573 15/17
Image 3 121630 230 4/4
Image 4 103757 2385 4/4

Table 1. Total number of detected pixels for Weibull CFAR
and the proposed method, along with detected targets per im-
age.

5. CONCLUSION

In this paper we have presented a method for the detection of
ships at sea in SAR remote sensing imagery, using superpixel
segmentation and statistical detection followed by Weibull
CFAR detection. We present results on SENTINEL-1 data
that demonstrate the efficiency of our algorithm not only on
the detection of ships at sea but also on automatically dis-
carding any land segments present in the image without prior
masking.
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