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ABSTRACT

Irregular scene text such as curved, rotated or perspective texts com-
monly appear in natural scene images due to different camera view
points, special design purposes etc. In this work, we propose a text
salience map guided model to recognize these arbitrary direction
scene texts. We train a deep Fully Convolutional Network (FCN) to
calculate the precise salience map for texts. Then we estimate the po-
sitions and rotations of the text and utilize this information to guide
the generation of CNN sequence features. Finally the sequence is
recognized with a Recurrent Neural Network (RNN) model. Experi-
ments on various public datasets show that the proposed approach is
robust to different distortions and performs superior or comparable
to the state-of-the-art techniques.

Index Terms— Scene Text Recognition, Fully Convolutional
Network, Recurrent Neural Network, Text Salience Map, Arbitrary
Direction Text

1. INTRODUCTION AND RELATED WORK

Recognizing the texts from images is a practical task that has at-
tracted increasing attention during recent years. Different from the
traditional Optical Character Recognition (OCR) technique, the dif-
ficulty of recognizing the natural scene texts comes from the un-
constrained conditions. For example, irregular scene texts such as
curved, rotated or perspective texts are commonly appearing in scene
images due to different camera view points, special design purposes
etc. Thus developing a robust text recognition algorithm which can
handle different kinds of distortion has become an interesting yet
challenging research topic.

As in [1], a complete text detection and recognition system can
be divided into various sub tasks such as text localization, word
recognition and so on. In this work, we focus on the cropped word
recognition task. Many algorithms have been proposed to solve this
problem. For character recognition, methods based on features such
as Histogram of Gradients (HOG) [2, 3], text specific multi-scale
features [4], mid level features [5], low-dimensional attribute [6] or
Convolutional Neural Network (CNN) features [7, 8, 9, 10, 11] have
been widely explored in existing literature. Among them, the dis-
criminative CNN features have shown its effectiveness and greatly
improved the performance. For word recognition, in [10] a lexicon-
driven segmentation based method is utilized and by considering the
word image as a sequence of characters, in [8] a HMM based and in
[12] a Recurrent Neural Network (RNN) based sequence model have
been proposed and achieved encouraging results. However, these
methods do not have the module to deal with the irregular text such
as Fig.1(a) and the performance could also drops if the bounding box
is not well labeled.

To recognize the perspective texts, rotation invariant features
such as SIFT [13] or circular Fourier-HOG [14] are extracted and

(a) Original image (b) Text salience map

(c) Text centroid curve (d) Guided sliding windows

Fig. 1: Illustration of the proposed method for arbitrary text recogni-
tion. Firstly an accurate text salience map (b) is predicted with FCN,
and then the text centroid curve (c) is estimated and the sequence of
CNN features (d) extracted and recognized with a RNN model.

utilized to handle the distortion. Improved as they are, the results are
still not satisfied. In [15], the distorted images are rectified by a spa-
tial transform network (STN) and then recognized with a sequence
classification network. However the STN is sensitive to the initial-
ization and the performance could be easily affected if the shape of
the actual text is not consistent with the initial fiducial points.

In real world, the texts are usually curved or rotated and the word
images are also not well cropped which decrease the performance of
the recognition algorithm. In this work, to address the problem of
irregular text, we propose a salience map based approach. In con-
trast to previous methods, we employ the deep FCN [16] which can
learn to compute the text salience map more effectively and effi-
ciently. Then we derive the character centroid curve using the max-
imum likelihood estimation. Finally the sequence of CNN features
is recognized with a RNN model. As the pipeline illustrated in Fig.
1, our approach can explicitly find the positions and rotations of the
text and utilize that information to guide the generation of CNN se-
quence. In the experiments, we show that the proposed approach is
superior or comparable with the state-of-the-art for word recognition
on various public datasets.

The following of the paper is organized as: the proposed ap-
proach is described in Section 2, The implementation and experi-
mental results are described in detail in Section 3. Conclusions and
future direction are given in Section 4.

2. PROPOSED APPROACH

2.1. Fully Convolutional Network for Text Salience Map

Fully Convolutional Network (FCN) has been proposed to under-
stand the images from pixel level and has achieved promising results
than conventional methods for tasks such as semantic segmentation
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Fig. 2: Network structure for text salience map based on VGG-16
model with deep supervision.

[16], edge detection [17]. We also utilize the FCN to generate the
text salience map for its advantages that 1) it can effectively cap-
ture the local and global structure of the texts with the convolutional
and de-convolutional layers. 2) it is very efficient since all the com-
putation is done within one forward pass. We employ the widely
used VGG-16 network [18] with deeply supervised hidden layers
[17] as our basic structure. The overall network structure is shown
in Fig. 2. There are 5 stages of convolutional layers same with the
VGG-16 layer network. The output of each conv layer is feed to the
de-convolutional layer [16] to generate a feature map which has the
same size with original image. To improve the pixel level labeling
accuracy, we utilize the deep supervision strategy proposed in [17]
where each side output is also supervised by the ground truth. The
side outputs are finally weighted fused through a 1 ⇥ 1 conv layer
to get the final prediction. During training, the side output cross en-
tropy losses L

side

as well as the fused loss L
fuse

are computed and
minimized through stochastic gradient descent method.

There are different types of pixel level ground truth maps. Ac-
cording to the difficulty of annotation, the easiest type is the text
block as used in [19]. However, the text block contains very coarse
information and cannot capture the accurate shape of the text re-
gions. In this work we consider two other types namely text seg-
mentation and text edge (or boundary) which carry more accurate
information. The visual examples of these two types are illustrated
in Fig. 3 (c) and (d). Edge map can be easily obtained from the seg-
mentation. To find which is better we conducted experiments with
both types and predicted text salience map of two models are shown
in Fig. 4. On one hand, we can see that the text salience map of
each stage captures the structures at different levels from local to
global. Thus we can get the accurate structure of the texts from the
final fused map. On the other hand, the fused map trained with the
edge map as the ground truth becomes much clearer than by using
segmentation since the convolutional operations is more sensitives
to the edges.

The spatial size of the feature map shrinks with number of pool-
ing layers, to further reduce the model parameters and avoid the
over shrinkage, we also tried another network architecture variant of
VGG-16 network by removing the last 2 stages for the model shown
Fig. 2. However, in the experiment we find that when the depth is
decreased, the quality of generated salience map become relatively
poorer with more noise and non-text artifacts.

(a) Image (b) Block

(c) Segmentation (d) Edge (Boundary)

Fig. 3: Different types of pixel-level ground truth.
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Fig. 4: Output of each stage using different ground truths.

2.2. Guided Sampling of Sliding Windows

Once the text salience map is computed, we can know the charac-
ter locations more precisely and sampling the sliding window more
accurately with the guidance of the salience map. Pixels with prob-
abilities greater than zero are considered as the foreground pixels
and denoted as D = {(x

i

, y

i

)...(x

n

, y

n

)}, i = 1, 2, ...n, where n is
the total number of text pixels. We assume the pixels of characters
are vertically symmetric. Thus the curve derived from these points
should be the curve formed by the characters’ centroids. We model
the curve of centroids using a k-th order polynomial manner,
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where a1, ..., ak

are the coefficients need to be estimated. Writing
Eq. (1) in matrix form and the maximum likelihood estimation of
the coefficients a is given below,

a = (XTX)

�1XTy. (2)

We sample the sliding window along the horizontal axis of the image
with a stride of 2 pixels, let x

t

denotes the x-axis position of the
sliding window, then centroid position of a character is given by

(x, y) = (x

t

, f(x

t

)). (3)

The rotation angle ✓ of the sliding window can be derived from the
slope of the curve as,

✓ = � 1

@f

@x

(x

t

)

. (4)

One example of the estimated curve and sampled sliding window is
shown in Fig. 1.

2.3. Recurrent Neural Network for Sequence Recognition

For sequence recognition, the methods based on bi-directional Re-
current Neural Network with LSTM [20] structure and Connection-
ist Temporal Classification (CTC) [21] have show promising results.
To recognize the generated sequence of sliding windows as charac-
ter sequence, in this work we adopt the same architecture as in [12].
In the network, there are two bi-directional LSTM layers with 256
hidden units. For consistence, we re-use the VGG-16 network and
extract the output of last fully connected layer as the feature vector
(512 dims) to train the RNN network. Usually a lexicon or word
list is provided to correct the prediction to the correct word in the
language. Given the raw prediction results w from RNN, the recog-
nition result s⇤ is derived as the word in the lexicon which maximize
the probability,

s⇤ = argmax

s2D

(log P(s|w)), (5)

where D is the lexicon, and P(s|w) is the probability of lexicon
word s given the raw sequence w.

2.4. Hybrid Method for Robust Text Recognition

The proposed method is not without limit. For the low resolution
or heavily corrupted images, the computation of text salience map
is theoretically impossible. In that situation the recognition perfor-
mance of simple sliding window approach which is based on the
original human annotated bounding box is better. To fix this prob-
lem, we propose to use a hybrid method. The final prediction s

final

is the result of simple sliding window based prediction s

simple

and
guided sliding window based prediction s

guided

with higher proba-
bility,

s
final

= max

s
{P(s

simple

), P(s
guided

)}. (6)

3. EXPERIMENTAL RESULTS

In this section we present the experimental setting and recognition
results for our algorithm. Firstly we train a VGG-16 network for
character classification with the data collected with various datasets

in [10], then we initialize the salience map network with this pre-
trained model. We manually labeled a dataset which contains 18282
word images with binary segmentations from 3000 natural scene im-
ages and use it as training data for the text salience map network.
For the RNN sequence recognition model, similar as [12] we use the
3600 word images collected from training set of ICDAR03, SVT,
KAIST, and IIIT5K dataset. For test, we resize each test image to
fixed height of 40 pixels while keeping its original aspect ratio and
center crop each sliding window with size 32 ⇥ 32 to compute the
CNN features.

3.1. Results on Word Recognition

Firstly we evaluate the proposed algorithm on widely used ICDAR
2003, SVT-WORD and IIIT5K datasets. Words with less than two
characters are ignored thus leaving 862 test images for the IC-
DAR 2003 test set and 647 for the SVT-WORD. The recognizer is
tested with a lexicon of different size. The lexicon is formed by
the ground truth word plus a number of distractors. For the ICDAR
2003 dataset, the distractors are all words in ICDAR 2003 test set
(ICDAR03-full) or 50 randomly selected words (ICDAR03-50) [22]
and for SVT-WORD, there are 50 selected words [2]. The word
images in IIIT5K datasets are associated with two lexicons of 50
words and 1000 words.

Table 1 shows the word recognition results for different algo-
rithms on ICDAR 2003, SVT-WORD and IIIT5K datasets. We use
the simple sliding window based RNN sequence recognition model
with VGG16 features as our baseline. The results with guided
sliding window and hybrid method are reported. The proposed
guided method improves the baseline and exising work [12] on most
datasets except SVT-word dataset. The SVT word dataset contains
many low-resolution images and in that case the proposed approach
has better performance using the hybrid mode since they are diffi-
cult to computed the accurate text salience map. For dataset with
more irregular texts such as IIIT5K the guided sampling mode itself
improves the baseline more than the hybrid mode.

Methods [15, 25] employ very large scale dataset (9⇥ 10

6 word
images) and achieve high performance. However, in [25] by consid-
ering the each word among a 90, 000 sized English lexicon as one
class, the model requires large number of parameters and is not flex-
ible to extend to new or unknown words once trained. In [15] the
initial fudical points of the rectification should be carefully set ac-
cording to prior knowledge and the performance could be degraded
when the actual text shapes are not consistent with the initialization.
On contrast, the proposed approach is more flexible and robust to
different distortions. We believe the performance of proposed ap-
proach could also gained through large scale dataset training.

3.2. Results on Arbitrary Direction Word Recognition

We also test our approach on more challenging SVT perspective
[13] and MSRA-TD500-WORD dataset [26]. The SVT perspective
dataset contains 639 word images and the images are intentionally
picked from Google Street View with a variety of viewpoints and ori-
entations. MSRA-TD500-WORD is also dataset that includes many
texts of arbitrary orientations and perspective texts. The results for
these two datasets are shown in Table 2. We can see a large gain in
the performance compared with the baseline and other existing al-
gorithms, the improvement indicates that the proposed approach is
robust against the distortions and rotations.

For the speed, tested with ICDAR03 dataset with 50 sized lexi-
con, the proposed guided approach runs at 0.74s per image on aver-

1644



Table 1: Cropped word recognition accuracy (%) on the ICDAR 2003, SVT-WORD and IIIT5K datasets. The numbers in the bracket are
lexicon size.

Method ICDAR03 (50) ICDAR03 (full) SVT-WORD (50) IIIT5K (50) IIIT5K (1000)
Wang et al.[22] 76.0 62.0 57.0 - -

Mishar et al. [23] 81.8 67.8 73.2 - -
Wang & Wu [7] 90.0 84.0 70.0 - -
Shi et al. [24] 87.4 79.3 73.5 - -
Yao et al. [4] 88.5 80.3 75.9 80.2 69.3

Almazan et al. [6] - - 87.0 88.6 75.6
Alsharif et al. [8] 93.1 88.6 74.3 - -
Gordo et al. [5] - - 90.7 93.3 86.6

Jaderberg et al. [10] 96.2 91.5 86.1 - -
He et al. [12] 97.0 93.8 93.5 94.0 91.5

Proposed (Baseline) 96.6 93.4 90.9 95.1 90.8
Proposed (Guided) 96.8 94.2 90.1 96.4 92.3
Proposed (Hybrid) 97.0 94.4 91.5 96.1 92.1

Training with very large additional dataset
PhotoOCR [9] - - 90.4 - -

Jaderberg et al. [25] 98.7 98.6 95.4 97.1 92.7
Shi et al. [15] 98.3 96.2 95.5 96.2 93.8

Table 2: Cropped word recognition accuracy (%) on the SVT-Perspective Word and MSRA-TD500 Word dataset.

Method SVT-Perspective (50) SVT-Perspective (Full) MSRA-TD-500 (Full)
K. Wang et al. [22] 40.5 26.1 44.5
Mishar et al. [23] 45.7 67.8 73.2
T. Wang et al. [7] 40.2 32.4 20.8
Phan et al. [13] 62.3 42.2 58.4
Zhou et al. [14] 67.0 45.7 65.4

Proposed (Baseline) 78.6 62.2 71.7
Proposed (Guided) 80.9 63.1 78.2
Proposed (Hybrid) 79.7 64.2 76.7

age with an Intel Xeon E5-2650 2.6 GHz ⇥ 2 machine with GPU.
Fig. 5 shows some correctly recognized examples and failure cases.
Images and salience maps are resized to similar scale for better vi-
sual purpose. Many of the failures are due to low resolution, fancy
font styles and so on. For these images the computation of text
salience map is very challenging and some of them are even diffi-
cult for humans to read.

4. CONCLUSION

In this paper, a salience map based text recognition approach is pro-
posed to handle the problem of irregular text. The deep FCN [16] is
learned and utilized to calculate the text salience map for its high per-
formance and efficiency. Then the positions and rotations of the text
are estimated using maximum likelihood and utilized to guide the
generation of CNN sequence. Finally the sequence of CNN features
is recognized with a Recurrent Neural Network model. As shown in
the experiments, the proposed approach is robust to many commonly
appeared distortions like curved, rotate, perspective texts and so on.
In future work, we will extend the FCN based salience computation
method to the text detection task and build an end-to-end recognition
framework.

(a)

(b)

Fig. 5: Correctly recognized examples (a) and incorrect ones (b).
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