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Abstract—Summarization of videos depicting human activities is a
timely problem with important applications, e.g., in the domains of
surveillance or film/TV production, that steadily becomes more relevant.
Research on video summarization has mainly relied on global clustering
or local (frame-by-frame) saliency methods to provide automated algo-
rithmic solutions for key-frame extraction. This work presents a method
based on selecting as key-frames video frames able to optimally recon-
struct the entire video. The novelty lies in modelling the reconstruction
algebraically as a Column Subset Selection Problem (CSSP), resulting
in extracting key-frames that correspond to elementary visual building
blocks. The problem is formulated under an optimization framework
and approximately solved via a genetic algorithm. The proposed video
summarization method is being evaluated using a publicly available
annotated dataset and an objective evaluation metric. According to the
quantitative results, it clearly outperforms the typical clustering approach.
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I. INTRODUCTION

In recent years, the need for succinct presentation of digital
videos depicting human activities has increased exponentially. Data
from surveillance cameras or professional capture sessions are two
such cases where an automated algorithmic solution would greatly
benefit the end-users, allowing them rapid browsing, analysis, an-
notation and archiving of lengthy video footage, while significantly
reducing storage requirements. Video summarization addresses this
problem by generating compact versions of a video stream, after
having determined its most informative and representative content
[1]. Static summarization algorithms typically extract a set of salient
video frames, i.e., key-frames that represent the entire video content.
They are contrasted with dynamic summarization methods, where a
video skim is being constructed as a sequence of short video key-
segments concatenated in the correct temporal order, thus forming
a meaningfully shortened version of the original stream. This work
deals with the problem of static video summarization, i.e., key-frame
extraction, and skim construction is not addressed.

Typically, information is extracted by analysing the available
modalities (visual, audio or textual) to detect high-level semantic
content, e.g. depicted objects or events, as well as computing low-
level features from the video stream. To accomplish this task, each
video frame is first described by low-level image features, with the
most commonly employed frame descriptor being variants of global
joint image histograms in the HSV color space [2] [3].

In most of the relevant literature, summarization is implicitly
defined as a frame sampling problem, with systematic sample acquisi-
tion methods being presented that try to simultaneously satisfy several
heuristic criteria, such as compactness (lack of content redundancy in
the selected key-frames / key-segments), outlier inclusion (selection

of atypical key-frames / key-segments) and coverage (representation
of the entirety of the original video in the produced summary).
The traditional summarization method derived from this heuristic
definition is video frame clustering, e.g., with the frames closest to the
estimated cluster centroids being selected as key-frames. The number
of clusters may depend on the video length [2].

Various similar summarization approaches have also been pro-
posed, implicitly obeying the aforementioned heuristic criteria: e.g.,
a computational geometry-based approach [4] that results in key-
frames equidistant to each other in the sense of video content, or
a fast method which selects as key-frames the video frames that
locally maximize an aggregate intra-frame difference (computed using
color features) [5]. However, clustering still dominates the relevant
literature due to its simplicity, suitability to the problem and relatively
low computational requirements. In many cases, information about
the way a video is naturally segmented into shots (e.g., in movies
[6]) is also exploited to assist the summarization process [7] [3] [2]
[8], e.g. by applying clustering at shot-level. Typically, the extracted
key-frame set is pruned in a refinement post-processing stage. The
remaining key-frames are temporally ordered to produce a meaningful
summary.

The above described approaches can be applied to generic video,
while methods exploiting video type-specific information have also
been proposed. In surveillance videos, temporal segmentation (shot
boundaries detection [9]) is not a viable option due to the lack of cuts,
therefore motion detection is employed in order to create summaries
that contain sets of object actions, like pedestrian walking. Detected
actions taking place in different direction and speed, are fused into a
single scene to form a short length video or graphical cue containing
as many actions as possible [10]. However, this is not a useful
approach in the very similar scenario of raw videos from professional
capture sessions (e.g., television or film production), where also the
camera is static and natural segmentation into shots is absent, since
the preferred summarization goal would be to select one key-frame
per depicted activity.

In [11] and [12] the video summarization problem is formu-
lated in terms of sparse dictionary learning, with extracted key-
frames enabling optimal reconstruction of the original video from
the selected dictionary. Such an approach implies an interesting and
formal definition of a video summary, as the set of key-frames
that can linearly reconstruct the full-length video in an algebraic
sense. However, the conciseness of the summary is only enforced via
optimization using a sparsity constraint, with no guarantees that such
a process will actually converge to a small number of key-frames.
Thus, compactness is not assured.

Our paper, following in this line of work, attempts to overcome
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this limitation and provide a novel reconstruction-based algebraic
method where the number of key-frames is a fixed, user-provided
parameter, as in typical clustering approaches. To this end, the
Column Subset Selection Problem (CSSP) is employed for problem
modelling and solved using a genetic algorithm. Thus, the proposed
method is able to extract a set of key-frames constituting elemental
visual building blocks of the original video sequence, implicitly
defining the summary as a subset of the video frames from which
the entire full-length video may be linearly reconstructed. To our
knowledge, the CSSP has not been employed before in the context
of a key-frame extraction algorithm.

II. VIDEO SUMMARIZATION BASED ON THE COLUMN SUBSET

SELECTION PROBLEM

The first step of video summarization is video frame description.
In the proposed approach, each video is assumed to be composed
of a temporally ordered sequence of Nf video frames of dimension
M ×N , each one being a set of K matrices Vik ∈ RM×N , where
0 ≤ i < Nf and k ∈ l, h, o, e. K is the number of available image
channels: l stands for luminance, h for color hue, o for optical flow
magnitude and e for edge map. Each Vik is a digitized 8-bit image
with a resolution of M ×N pixels.

A global and a local descriptor were separately employed and
compared: global, 16-bin video frame intensity histogram, as well as
visual word histograms based on SURF descriptors [13] and a Bag-
of-Features representation scheme [14]. Intensity histograms were
selected due to their prevalence in video summarization literature,
while SURF descriptors due to their great performance at a relatively
low computational cost in object recognition applications [13]. In
the first case, for the i-th frame, the histograms are being separately
computed on each image channel and then concatenated. In the second
case, a single set of descriptors Di is derived by simply concatenating
corresponding 128-dimensional SURF vectors separately computed
on the available channels. The vector correspondence between chan-
nels is established in terms of spatial pixel coordinate matching,
while the interest points are initially detected solely on Vil, i.e., on
luminance. Each Di, composed of Pi 128K-dimensional description
vectors, is then transformed into a single Kc-dimensional BoF visual
word histogram di [14], where c is a codebooks size parameter. The
adoption of the BoF approach was motivated by its proven suitability
for the representation of human activities, since it discards most of
the spatial information and thus provides partial invariance to changes
in camera viewpoint, number of human subjects, scale, rotation and
occluded object parts [15].

Human activity videos are mainly composed of elementary visual
building blocks assembled in several combinations. Given the above
video description strategy, this is expressed with each video being
represented as a histogram matrix D, where several columns consti-
tute linear combinations of other columns. Thus, the summarization
objective is for the estimated summary C to mainly contain columns
that form a set of linearly independent basis vectors, spanning the
space of all columns in D. In this sense, C will tend to be able
to reconstruct the original matrix D in a manner well-suited to the
task at hand, ideally extracting key-frames representative of all the
depicted human activities.

Therefore, the proposed method models key-frame extraction as
a matrix Column Subset Selection Problem (CSSP) [16], which, to
our knowledge, has not been attempted before. Below, the CSSP is
briefly discussed. Assuming a low-rank Kc × Nf matrix D and a

parameter C < Nf , CSSP consists in selecting a subset of exactly
C columns of D, which will form a new Kc × C matrix C that
captures as much of the information contained in the original matrix
as possible. The goal is to construct a matrix C ∈ RKc×C such that
the quantity

‖D− (CC+)D‖F (1)

is minimized. In the above, ‖ · ‖F is the Frobenius matrix norm and
C+ is the pseudoinverse of C. Thus, the goal is to minimize the
reconstruction error between the entire video D and the projection of
D onto the span of the C columns contained in the summary C. If
C was a full-rank matrix, then CC+ would equal the identity matrix
and the reconstruction error would be 0. Thus, minimizing Equation
(1) is equivalent to finding a subset matrix C that is as close to
full-rank as possible.

CSSP is an obvious choice for mathematically modelling a feature
selection process as an optimization problem. It can be optimally
solved by exhaustive search in O(NC) time [16], which clearly
is a very impractical approach. Thus, approximate algorithms with
lower computational complexity have been presented in the relevant
literature, with the goal of finding a suboptimal but acceptable
solution.

In [17], a genetic approach is successfully employed for the
approximate solution of the CSSP, by directly using Equation (1) as a
fitness function. The method is evaluated on several small, randomly
generated matrices and is shown to produce good results for a fixed
small value of C. In this work, the same approach was adopted and
adapted into the proposed algorithm.

Due to the nature of the CSSP, there is no need for a regular-
izing function R(C), like the one in [12]. The degree of summary
compactness and conciseness is directly regulated by a strict, user-
provided parameter C, as in most commonly employed clustering-
based summarization methods. The desired solution is a set of matrix
column indices with cardinality equal to C. Since D ∈ RKc×Nf , for
the k-th such index with an assigned value gk the following hold:

k ∈ N, k ∈ [1, · · · , C]. (2)

gk ∈ N, gk ∈ [1, · · · , Nf ]. (3)

A genetic algorithm is employed to approximate an optimal solution
[17]. Each candidate/chromosome is encoded in the form of a
sequence of column indices sorted in increasing order. Every such
chromosome is of length C and population size is N . Roulette
selection at each iteration is adopted as the mating pool formation
strategy. Assuming fit(l) is the evaluated fitness of hl, i.e., the l-th
candidate in the current population, this method assigns a selection
probability plsel = fit(l)/

∑N
m=1 fit(m) to the l-th chromosome.

Below, the value assigned to the k-th gene of a chromosome hl is
denoted by hl

k.

An order-preserving variant of 1-point crossover [17] is utilized
as the main genetic operator. Specifically, in order to combine parent
chromosomes hl and hm, a random position k is selected as crossover
point and is inspected for suitability. k is considered to be suitable
as a crossover point, if the following condition holds:

(hl
k < hm

k+1) ∧ (hm
k < hl

k+1). (4)

This constraint ensures that both offspring will be valid candidates,
containing properly ordered matrix column indices. In case Equation
(4) does not hold for position k, a different position is selected and
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inspected. This process continues until either a suitable crossover
point has been detected, or all possible positions have been deemed
unsuitable. In the former case, crossover is applied and the two parent
chromosomes are replaced by their offspring. In the latter case, each
of the implicated chromosomes is passed unaltered to the population
of the next generation with probability plsel or pmsel, respectively. If hl

or hm is not being retained, it is replaced in the next generation by a
copy of the fittest current candidate hn with probability pnsel. If hn is
also not selected for retention, the process continues with the second
fittest of the current candidates, and so on, until a chromosome has
been selected.

An order-preserving variant of mutation [17] is employed as the
second genetic operator. Specifically, the k-th gene of a chromosome
hn, with an assigned valued of hn

k , is randomly selected and replaced
by a value determined by the neighbouring genes, according to
Equation (5):

hn
k =


rand(0,hn

k+1), if k = 1

rand(hn
k−1,h

n
k+1), if k ∈ (1, C)

rand(hn
k−1, Nf + 1), if k = C.

(5)

where rand(a, b) uniformly selects a random integer from the interval
(a, b). Although this operator ensures a proper ordering of the indices,
it has no effect when hn

k−1, hn
k and hn

k+1 are successive integers.

The matrix column indices encoded in the evaluated chromosome
hn give rise to the matrix Cn, composed of a subset of the columns in
D. Thus, the fitness function that needs to be maximized is expressed
as:

fit(hn) = ‖D− (CnC
+

n)D‖−1
F . (6)

The method may be easily extended to accommodate additional
desired summary properties, through proper manipulation of the em-
ployed fitness function. Additionally, an interesting research avenue
would be a way to evaluate summarization results for different values
of the parameter C, i.e., the desired key-frame set cardinality, since
ground truth is typically not available. This resembles the problem
of selecting a proper K in K-Means clustering. An obvious route to
tackle this problem is to run the algorithm for multiple consecutive
values of C and construct a signal with the corresponding CSSP
reconstruction errors. It is reasonable to expect the error to steadily
decrease for larger values of C. Then, a proper value for C may
be identified at the point where the signal’s derivative drops below a
threshold. Less obvious and more efficient approaches to this problem
could be explored in future research.

III. EVALUATION

In order to experimentally evaluate the proposed method, a subset
of the publicly available, annotated IMPART video dataset [18] was
employed. It depicts three subjects/actors in two different settings:
one outdoor and one indoor. A living room-like setting was set-up
for the latter, while two action scripts were executed during shooting,
prescribing human activities by a single human subject: one for the
outdoor and one for the indoor setting. In each shooting session,
the camera was static and the script was executed three times in
succession, one time per subject/actor. This was repeated three times
per script, for a total of 3 indoor and 3 outdoor shooting sessions.

Thus each script was executed three times per actor. Three main
actions were performed, namely “Walk”, “Hand-wave” and “Run”,
while additional distractor actions were also included and jointly
categorized as “Other” (e.g., “Jump Up-Down”, “Jump Forward”,

Fig. 1. Example frames from the IMPART video dataset. The respective
activities are “Run” (top left), “Walk” (bottom left), “Jump” (top right) and
“Hand-wave” (bottom right).

TABLE I. A COMPARISON OF THE MEAN IR SCORES FOR DIFFERENT
VIDEO DESCRIPTION/REPRESENTATION AND SUMMARIZATION METHODS.

Method K-Means++ CSSP
Global Histogram 0.571 0.636

SURF 0.484 0.534

“Bend Forward”). During shooting, the actors were moving along
predefined trajectories defined by three waypoints (A, B and C).
Summing up, the dataset consists of 6 MPEG-4 compressed video
files with a resolution of 720 x 540 pixels, where each one depicts
three actors performing a series of actions one after another. The
mean duration of the videos is about 182 seconds, or 4542 frames.
Sample video frames of the dataset are shown in Figure 1.

Ground truth annotation data provided along with the IMPART
dataset do not describe key-frames pre-selected by users, as in [2]
(which would be highly subjective), but obvious activity segment
frame boundaries. This fact was exploited to evaluate the proposed
framework as objectively as possible. Given the results of each
summarization algorithm for each video, the number of extracted key-
frames derived from actually different activity segments (hereafter
called independent key-frames) can be used as an indication of
summarization success. Therefore, the ratio of extracted independent
key-frames by the total number of requested key-frames K, hereafter
called Independence Ratio (IR) score, is a practical evaluation metric.

The proposed method and the K-Means++ algorithm [19] for
frame clustering were objectively evaluated and contrasted using
the IMPART dataset and the IR metric. The fast OpenCV [20]
implementations of the method in [21] and of the SURF detector
and descriptor were employed for optical flow estimation and local
video frame description, respectively. In all video frames, the Laplace
operator was used for deriving the edge map image channel, after
median-filtering for noise suppression.

TABLE II. A COMPARISON OF THE MEAN EXECUTION TIME
REQUIREMENTS PER-FRAME (IN MILLISECONDS) FOR DIFFERENT VIDEO

DESCRIPTION/REPRESENTATION AND SUMMARIZATION METHODS.

Method K-Means++ CSSP
Global Histogram 706 1119

SURF 1208 1789
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(a)

(b)

Fig. 2. Key-frames extracted on a sample of the IMPART dataset, using a) K-Means++ and b) the proposed CSSP-based method.

A crucial, user-provided parameter controlling the grain of sum-
marization is the desired number of clusters K and of the columns
C in the summary matrix C, in clustering and in the proposed
summarization method, respectively. It corresponds to the number
of requested extracted key-frames per video. The actual number Q of
different activity segments (known from the ground truth) was used
both as K and C for each video. Codebook size c was set to 80, while
the following parameters were used for the genetic algorithm: the
maximum number of generations was set to 100, the population size
L was set to 200, the crossover rate was set to 0.9, the mutation rate
was set to 0.005 and the elitism rate was set to 10%. The experiments
were performed on a high-end PC, with a Core i7 @ 3.5 GHz CPU
and 32 GB RAM, while the codebase was developed in C++.

Table I presents the IR scores, averaged over the entire employed
dataset, that were achieved by the two competing approaches, using
the. two employed video description schemes (global intensity his-
tograms and SURF-based visual word histograms). In all cases, all
discussed video frame channels (luminance, color hue, optical flow
magnitude map, edge map) were exploited through description vector
concatenation.

Table II presents the mean required execution times per-frame (in
milliseconds), over the entire employed dataset, that were achieved
by the competing approaches. These measurements include the time
necessary for all description, representation and summarization stages
for all image channels, as well as the time needed for image channel
computation per-frame.

Figures 2a,b depict the key-frames extracted using the K-
Means++ algorithms and the proposed CSSP-based method, respec-
tively, on a short sample of the IMPART dataset, composed of 5
activity segments: two “Walk”, one “Run”, one “Hand-wave” and
one “Other” action (a “Jump Forward”). K and C were set to 5,
while the global image histograms description scheme was employed.
By visual inspection, clustering seems to produce a key-frame set
with greater redundancy (two frames are almost identical), while the
proposed method apparently decomposes the video into elemental
visual word subsets, including a blank key-frame depicting only the
static background. It is interesting that the “Run” segment is not
captured by either method, which may be attributed to its high
similarity to the “Walk” segments. It is reasonable that a more
elaborate video description scheme is necessary to overcome this
limitation.

As it can be seen, local SURF descriptors are outperformed by the
more common and faster global image histograms, which confirms the
findings of [22] that in the absence of clear shot boundary information,
global image color histograms produce better results than SIFT and
SURF. This suggests that sparsely sampled and highly invariant
descriptors designed for recognition tasks are not necessarily suitable
for video summarization. Regarding the competing summarization
approaches, it is evident that the proposed method is quantitatively
better than the established clustering technique, in terms of the IR
metric. However, this comes at the cost of higher computational
requirements: it demands approximately 1.5 times the runtime of the
clustering approach.

IV. CONCLUSIONS

A matrix reconstruction-based method for summarization of
videos depicting human activities was presented, that guarantees
desired conciseness through fixed key-frame set cardinality. The
novelty lies in modelling the problem as a Column Subset Selection
Problem (CSSP), with the extracted key-frames corresponding to
elementary visual building blocks that may linearly reconstruct the
original video. This was formulated under an optimization framework
and approximately solved via a genetic algorithm. The proposed
video summarization method was evaluated using a publicly available
annotated dataset and an objective evaluation metric. According to
the quantitative results, it clearly outperforms the typical clustering
approach, while previous findings regarding the suitability of simple
global image histograms, in contrast to recognition-oriented local
image descriptors, to the task of video summarization were validated.
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