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ABSTRACT

In this paper, we proposed new framework for human ac-
tion representation, which leverages the strengths of convolu-
tional neural networks (CNNs) and the linear dynamical sys-
tem (LDS) to represent both spatial and temporal structures
of actions in videos. We make two principal contributions:
first, we incorporate image-trained CNNss to detect action clip
concepts, which takes advantage of different levels of infor-
mation by combining the two layers in CNNs trained from
images; Second, we further propose adopting a linear dynam-
ical system (LDS) to model the relationships between these
clip concepts, which captures temporal structures of actions.
We have applied the proposed method on two challenging re-
alistic benchmark datasets, and our method achieves high per-
formance up to 86.16% on the YouTube and 82.76% UCF50
datasets, which largely outperforms most of the state-of-the-
art algorithms with more sophisticated techniques.

Index Terms— Deep learning, Image-trained CNNs, Lin-
ear dynamical system, Concept confidence

1. INTRODUCTION

Human action recognition on realistic scenarios has recently
drawn great interest for video analysis, which poses great
challenges for accurate recognition. The main cue of an ac-
tion contains spatial and temporal structures, both of which
should be modeled for action representation. [1]. In this pa-
per, we propose a new framework to leverage the strengths of
deep learning and linear dynamic system for representations
of realistic actions.

Deep learning [2] has shown great effectiveness in many
applications including mainly image and signal processing.
In fact, the idea of deep learning is to stack the basic unit
into different hierarchical structure, which aims to extracts
hierarchical information. Although for different applications,
the deep learning ideas are similar, there is a common sense
for architecture selection, such as recurrent neural network
(RNN) [3] in natural language processing, deep belief nets
(DBN) in speech signal processing [4] and CNNs in image
understanding [2, 5].

Given the overwhelming success in the image domain for
visual analysis and recognition tasks, CNNs have been widely
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Fig. 1. The illustration of video representation on CNN (best
viewed in color).

used as the most powerful tool for feature learning from still
image. Thanks to ImageNet large scale visual recognition
challenge (ILSVRC), which brings the appealing growth of
CNNs from 2012, and well-known open models as Alexnet
in 2012, GoogLeNet [6] and VGGNet [7] in 2014 are derived
from it. Besides the image classification tasks on CNNs, de-
scriptors learned by CNNs can also boost the performances
of a broad range of visual tasks, including object detection in
[8], action recognition in [9] and scene labeling in [10].

Recently, CNNss started to draw research interest in video
analysis and event detection in the video domain. Generally
speaking, there are two-way to apply CNNs in video process-
ing. One is to extract frame level CNNs descriptors, as in [11,
12], accompanied by suitable pooling and encoding strate-
gies, which can achieve state-of-the-art performance. The
other way is to retrain CNNs by local cuboid representations,
which is time-consuming and laborious task.

In this paper, we target at action recognition for realistic
scenarios with actions in complex backgrounds and clutters.
To capture the spatial appearance information of actions, we
proposed adopt CNNs to extract features. To avoid the com-
plicated re-training procedure, our work starts from CNNs
learned by still images in ImageNet without fine-tuning on
videos, and build a efficient framework to fuse the seman-
tic meaning in video with dynamical temporal information as
shown in Fig. 1. We adopt different colors to represent dif-
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ferent levels in video representation. The lowest level is on
frame, the middle level is on clips, and the highest level is
to treat video as both clip sequences and frame sets, which is
obtained from two different layers of CNNs.

To capture the temporal structure information of actions,
we propose using a linear dynamical system (LDS) [13] to
model the relationships between concept clips obtained from
the CNNs. Linear dynamical systems are dynamical systems
whose evaluation functions are linear and can be used to un-
derstand the qualitative behavior of general dynamical sys-
tems. We introduce the LDS to capture the temporal dynami-
cal structure in a video sequence.

We make two principal contributions: first, we incorpo-
rate image-trained CNNSs to detect action clip concepts, which
takes advantage of different levels of information by combin-
ing the two layers in CNNss trained from images; Second, we
further propose adopting a linear dynamical system (LDS) to
model the relationships between these clip concepts, which
captures complex dynamical temporal structures of actions in
a video sequence.

We apply the proposed method to challenging realistic hu-
man action datasets. The experimental results have demon-
strated that the proposed framework is effective to capture the
spatial and temporal features of actions to achieve efficient
and accurate human action recognition.

2. SPATIAL REPRESENTATION WITH CNNS

In order to leverage the great strength of the deep learning
techniques, we propose using the convolutional neural net-
works (CNNs) to capture the spatial appearance of actions
in video frames. In stead of training new CNNs on video
sequences, which would be extremely expensive to compute
and even feasible for large scale human action datasets, we
propose adopting the image-trained CNNs, a set of filters, to
extract spatial appearance features from video frames.

The VGG network is currently the most preferred choice
in the community when extracting CNNs features from im-
ages. In particular, we adopt the VGGNet with 21 layers com-
posed of convolution, full-connect and max pooling layers.

Instead of directly applying VLAD or BoW on image rep-
resentation of CNNs, we fully utilize the CNNs both for con-
cept detector and for the background variation reflection. We
adopt the last layer in CNNs in Fig. 1 to reflect the semantic
concept of each frame in video, and the 6! full connection
(fcg) layer output to represent the global background infor-
mation.

2.1. Descriptor on whole videos

Inspired by [11], which treats the filters as latent concept clas-
sifiers, we believe that the filter output in convolution layer at
least can reflect the global content information of each frame.
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This is the main reason for selecting the fcg layer output to
extract background information.

The dimension of fcg layer output is 4096, and each di-
mension corresponds to the response of filter with 6 X 6 x 256
cuboid size. This vector with 4096 dimension can fully reflect
the content of frame from different aspects, such as color,
shape and so on. By PCA dimensional reduction and nor-
malization in Fig. 1, the variance on the output of fcg layer
is computed as background information, which gives the di-
vergence of the whole video and is helpful to distinguish the
actions with complex backgrounds.

Combined with a linear dynamical system, we can capture
the full information of actions in a video, which includes the
spatial appearances, i.e., the layout of human body in clips,
and temporal relations among clip sequences.

2.2. Concept confidence on clips

We start with extracting the frame level CNNs descriptors on
the model shared by VGG group. For the last layer in CNNss,
we can treat it as a classifier or a concept detector which can
give the likelihood details of each object among 1000 cat-
egories in ImageNet, which is shown in Fig. 1. By max-
pooling, we can represent concept confidence on clip level in
algorithm 1.

Algorithm 1 Concept confidence Ly

Input: Input videos
Output: Video representation by concept confidence
1. Dividing the nt* video into several clips, and a video is
treated as the clip sequence with latent temporal structure.
V, ={V} . .ve . VvEy
2. For each clip, it is treated as a frame set without temporal
information.
VE = {5 (L), fE (), oo F5(T))
3. For one frame f;(t), compute the likelihood /. ;) by
the concept detector, which is the score vector, output of
the last layer in a CNN.
4. For all [yc(y) in V7, compute the concept confidence as
Ly (i) = maxyeq1...1y Lye () (i), where i corresponds the
dimension index in . 4).

3. TEMPORAL MODELING WITH LDS

The temporal structure contains informative and discrimina-
tive information, which can be explored to achieve effective
representations of human actions. Although concept confi-
dence can provide reasonable estimation of the probability of
the content in each clip, how best to integrate this information
with temporal structure remains a challenge. We introduce a
linear dynamical system (LDS) to model the temporal rela-
tions among clips.



We represent a video V' as a sequence of n clips, with no
overlap. As described above, each clip descriptor by concept
confidence can express the content from semantic aspect, and
the clip descriptor sequence could be treated independently as
an individual time series. In order to exploit the interactions
across clips, a linear dynamical system (LDS) is adopted here
with an additional advantage of dimensionality reduction.

LDS can be defined as:

Zn4+1 = Azn + W41 (1)
xn = Czy +&n )

where z,, is the state at time n and z,, is the output of
system at the same time.

This model assumes the observed output sequences are
generated from a series of hidden variables with a linear pro-
jection matrix C, and the hidden variables evolve over time
with a linear transition matrix A.

As observed in [13], if we decompose matrix A as fol-
lows, the complex eigen values can represent some properties
of the signal such as the frequency and phase.

A=UAU" 3)

where UU* = [ contains the eigenvectors of A and A
is a diagonal matrix of eigenvalues of A. Furthermore, in
order to obtain the same observation sequences from A as the
transition matrix, we need to compensate the output matrix C
as:

Cp,=CU @

It has already been shown that C}, can discriminatively
represent original videos by exploiting the temporal structure
between clips. By dropping off the phase information, which
is only the delay in time domain, only the magnitude of Cf,
is considered in our method, corresponding to the dynamical
information in Fig. 1.

4. EXPERIMENTS AND RESULTS

We apply the proposed method to challenging realistic human
action recognition datasets. The proposed method achieves
high performance and largely outperforms the state-of-the-art
algorithms which use sophisticated techniques. The signifi-
cantly improved performance has demonstrated the effective-
ness of the proposed method for human action recognition.

4.1. Datasets

YouTube action [14]: This dataset contains 1168 sequences
of 11 action categories: basketball shooting, biking/cycling,
diving, golf swinging, horse back riding,soccer juggling,
swinging, tennis swinging, trampoline jumping, volleyball
spiking, and walking with a dog. This dataset is challenging
due to large variations in camera motion, object appearance
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and pose, object scale, viewpoint, cluttered background and
illumination conditions.

UCF50 [15]: This dataset contains 6685 sequences of 50
action categories, consisting of realistic videos taken from
YouTube. Comparing to the Youtube action dataset above,
object scale, viewpoint, cluttered background, illumination
conditions are also changed among different categories.

4.2. Settings

For the hidden state number / of LDS in following experi-
ments, we set it to be 8 in Eq. (5), where s, is the singular
value of matrix |C}| and in practice. We keep 90% energy
to determine h. In addition, each video is divided into 10
clips, such that the clip level representation for each video
with different durations can have the same size. For action
recognition, a linear SVM [16] is applied for human action
recognition.

h 2
2j=15
mo 3
Dim1 5
We conduct extensive experimental comparison with state-of-
the-art algorithms on these two datasets to comprehensively

h + arg,

&)



Algorithm [ Accuracy ‘

Dynamical information + background mforrpatlon 86.16%
+ concept confidence
Hierarchical feature on ISA + BoF
+ Chi-square kernel [17] | 75.80%
Dense trajectory + HOG +HOF + MBH + BoF [18] | 84.10%
SIFT trajectory + HOG +HOF + MBH + BoF [18] | 73.20%
KLT trajectory + HOG +HOF + MBH + BoF [18] | 79.50%
Dense cuboids + HOG + HOF + MBH +BoF [18] | 81.40%
Static + motion feature [14] | 71.20%
Relative motion descriptor (RMD) + Modes [19] | 81.70%
Dense trajectory + BoF [20] | 84.20%

Table 1. Performance comparison of accuracy with state-of-the-art
approaches on the YouTube dataset

investigate the proposed method.

4.3. Performance on the video level descriptor

Fig. 2 gives the performance of video level descriptors, in-
cluding individual dynamical information with and without
background information.

It can be seen that for individual dynamical information,
the performance achieves 80.06% on YouTube action dataset
while it is 75.64% for UCF50 dataset, proving the effective-
ness of dynamical information. The main reason lies in that
dynamical information aims to dig the temporal structure,
which is important in action representation.

With additional background information, the performance
can be further enhanced by the proposed method. Compared
with the algorithms that neglects background information, the
proposed method improves the performance by a large mar-
gin of 3.81% on the YouTube dataset and of 7.12% on the
UCF50 dataset. This finding demonstrates the effectiveness
of background information, which can capture the divergence
for the whole video.

4.4. Fusion with the clip level descriptor

Fig. 3 shows the behavior of additional clip level descriptor.
on the YouTube dataset, additional concept confidence out-
performs the system without concept confidence by 2.78%
and 2.29% on the first two bars in Fig. 2 and Fig. 3 respec-
tively. However, on the UCF50 dataset, additional concept
confidence does not further improve the performance.

Note that dynamical information is extracted on concept
confidence by LDS, then concept confidence can be viewed
as static descriptor while dynamical information reflects the
temporal structure information. The behavior in Fig. 3 cer-
tifies that static descriptor is helpful when itself with great
discriminative ability, such as YouTube dataset with a smaller
category condition. However, with the increase of categories,
the static descriptors tend to be less discriminative due to the
sharing background information among different actions. In
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l Algorithm [ Accuracy ‘

‘ Dynamical information + background information ‘ 82.76 % ‘

Relative motion descriptor (RMD) + Modes [19] | 81.80%
Lagrangian particle trajectories [21] | 81.03%

Dense trajectory + HOG +HOF + MBH + BoF [18] | 84.50%
SIFT trajectory + HOG +HOF + MBH + BoF [18] | 71.80%
KLT trajectory + HOG +HOF + MBH + BoF [18] | 78.10%
Dense cuboids + HOG + HOF + MBH +BoF [18] | 80.20%
Motion feature [15] | 76.90%

GIST3D + STIP [22] | 73.70%

Orientation-based descriptor+ Gabor STIP [23] | 72.90%
Motion interchange patterns [24] | 72.68%

Table 2. Performance comparison of accuracy with state-of-the-art
approaches on the UCF50 dataset

this circumstance, the merit of dynamical information is man-
ifested.

4.5. Comparison to state-of-the-art performance

To show the advantages of proposed approach for human ac-
tion recognition, we have also conducted extensive compar-
ison with state-of-the-art results in Table 1 and Table 2 on
both YouTube and UCF50 datasets respectively. It is firstly
observed that on the YouTube dataset, the proposed method
beats the most of the previous methods with more sophisti-
cated techniques and computationally more expensive strati-
fies, even including the dense trajectory with the BoF frame-
work. Secondly, on the UCF50 dataset, the proposed method
outperforms most of methods and is even competitive with
the dense trajectories plus the HOG, HOF and MBH descrip-
tors, which however is computationally more expensive than
the proposed method.

The largely improved performance of the proposed method
over the state-of-art algorithms has clear shown the effective-
ness of the proposed methods for human action recognition
on realistic datasets, which also indicates its great potential
to be used in practical applications.

5. CONCLUSION

In this paper, we have presented a new framework for hu-
man action recognition on realistic datasets. To achieve in-
formative and effective representations of actions, we pro-
posed using convolutional neural networks (CNNs) to cap-
ture the spatial appearances and adopting a linear dynamical
system (LDS) to model the temporal structures. We apply
the proposed method to realistic human action recognition
on the YouTube and UCF50 datasets, which are realistic and
extremely challenging. The proposed method achieves high
recognition accuracy and outperforms most of the state-of-
the-art algorithms, which shows the effectiveness of the pro-
posed method for human action recognition in realistic sce-
narios.
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