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ABSTRACT

This paper proposes a dynamic tracking attention model
(DTAM), which mainly comprises a motion attention mecha-
nism, a convolutional neural network (CNN) and long short-
term memory (LSTM), to recognize human action in a video
sequence. In the motion attention mechanism, the local dy-
namic tracking is used to track moving objects in feature
domain and global dynamic tracking corrects the motion in
the spectral domain. The CNN is utilized to perform feature
extraction, while the LSTM is applied to handle sequential
information about actions that is extracted from videos. It ef-
fectively fetches information between consecutive frames in
a video sequence and has an even higher recognition rate than
does the CNN-LSTM. Combining the DTAM with the visual
attention model, the proposed algorithm has a recognition rate
that is 3.6% and 4.5% higher than that of the CNN-LSTMs
with and without the visual attention model, respectively.

Index Terms— Action recognition, long short-term
memory (LSTM), deep learning, attention model, convo-
lutional neural network

1. INTRODUCTION

Image recognition is important in daily life. With the aid
of feature extraction and machine learning techniques, many
advanced algorithms about face recognition, hand gesture
recognition, and iris recognition have been developed. Com-
pared to other sub-topics about image recognition, action
recognition is rather challenging since to recognize an ac-
tion from a video, each frame must be analyzed and features
should be extracted from multiple images

In recent years, several neural networks with deeper and
more complicated architectures have been developed. They
are called deep neural networks (DNNs) [1–9]. Some DNNs
are derived from neural networks, like the CNN [1,2] and the
LSTM [8, 9]. The CNN is frequently used to perform feature
extraction and as a classifier in the final layer. The LSTM is a
recurrent neural network (RNN) based model. It is effective
in many pattern recognition problems.

The CNN is composed of mostly convolutional layers and
pooling layers. It has been extensively used in image related
technologies. For example, multiple CNN models have been
used in face recognition [1] and hand gesture recognition [2].
Additionally, it can also be used in audio recognition [3].
For example, Abdel-Hamid et al. [4] performed a convolu-
tion operation on an audio spectrogram. He et al. [5] col-
lected feature maps using multiscale filters. In our paper, the
GoogLeNet [6] was adopted to generate features of images.

The LSTM has many applications, including scene label-
ing and image description. Johnson et al. [8] used the CNN-
LSTM for video analysis. In [9], the LSTM was applied to
gesture recognition. In [7], the GoogLeNet and the LSTM
was adopted to generate image descriptions.

In action recognition, various methods are used to extract
sequential information. Scovanneret al. [10] developed the
3D scale-invariant feature transform (SIFT). Moreover, the
3D histogram of the oriented gradient (HOG) [11], the speed
up robust features (SURF) [12], and the local binary patterns
(LBP) [13] were also applied to action recognition. Unlike the
above hand-crafted low-level features, the attention model is
used to extract information at times and places on which hu-
man attention is focused. Bottom-up and top-down saliency
detection, which is based on the distribution of low-level fea-
tures and semantics in images or video, plays an important
role in the attention model. Trainable visual attention models
that use RNNs were developed in [14]. V. Mnih et al. [15]
presented a visual attention model using the CNN-LSTM.

Although the visual attention model is very effective in
elucidating the meaning of images or videos, it often only
considers the information in single frame. Moving objects
capture human attention and should play a more important
role in action recognition. This paper develops an attention
model that is based on the information about motion extracted
from videos. The proposed motion attention model, called the
dynamic tracking attention model (DTAM), not only consid-
ers the information about motion but also perform dynamic
tracking of objects in videos. Moreover, in addition to the
DTAM, a visual attention model is adopted in the proposed
system for action recognition.
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Fig. 1. Overview of proposed action recognition system.

2. SYSTEM OVERVIEW

The proposed system combines two models the baseline vi-
sual attention [15] and the proposed DTAM. Figure 1 presents
an overview of the proposed system. First, a CNN is applied
to perform feature cuboid extraction on each frame of an ac-
tion video. Then, the proposed DTAM uses the information
about feature cuboids and the changes of object locations be-
tween two consecutive frames to generate a motion-based at-
tention model. Thereafter, LSTMs generate a visual attention
model and learn the DTAM. Finally, the results obtained us-
ing the visual attention model and the proposed DTAM are
combined to yield action recognition results from the video
of interest.

3. PROPOSED METHOD

In this section, the proposed motion attention model, DTAM,
and its adjustment are discussed. Figure 2 presents the archi-
tecture of the proposed motion attention model, which is com-
posed of the motion attention mechanism, CNN, and LSTM
units. The CNN is applied to the video frames and the output
feature cuboid is obtained. Then, the motion attention gener-
ated from optical flow images is used as weights. Finally, the
LSTM is used to determine the action recognition result.

3.1. Dynamic Tracking Attention Model (DTAM)

3.1.1. Extraction of information about motion

There are numerous works about using optical flow maps in
action recognition [16–18]. Wang et al. [19] studied the re-
lationship between RGB images and optical flow images to

Fig. 2. Architecture of dynamic tracking attention model.

Fig. 3. Optical flow images.

elucidate the effectiveness of information extraction. Ng et
al. [20] combined RGB and optical flow images in recogni-
tion. The proposed DTAM adopts optical flow [21] to extract
information about motion. Figure 3 presents an example of
optical flow images of basketball shooting.
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Fig. 4. Optical flow extraction.

Fig. 5. Effect of dynamic tracking on optical flow.

3.1.2. Dynamic tracking of motion

The CNN yields state-of-the-art results in semantic image
segmentation [22]. Feature cuboids x-y-c are extracted by a
CNN where x is the horizontal coordinate, y is the vertical
coordinate, and c is the category. They contain spatial and
semantic information. The activation of feature maps in the
x-y plane can find the location of objects and the activation
of feature maps in the c domain can identify the objects in
the image. The activation states of feature cuboids and the
information of motion can be used to track different mov-
ing objects dynamically. In the proposed DTAM, the two
dynamic tracking techniques are local dynamic tracking and
global dynamic tracking.

Since the optical flow can extract information about mo-
tion at any location in an image, the proposed DTAM is able
to find out the motion of objects. Accordingly, local dynamic
tracking samples the optical flow along the trajectory of each
feature map in the feature cuboid. Optical flow images [21]
have three dimensions, which are the information along hori-
zontal axis and the vertical axis and the magnitude of differ-
ence, respectively. Figure 4 presents the optical flow with lo-
cal dynamic tracking for the video of the human category. The
left-hand side of the figure gives an example of two sequen-
tial RGB images, the middle presents the three-dimensional
optical flow images obtained from the two sequential RGB
images, and the right-hand side presents the pseudo colorized
optical flow image.

While local dynamic tracking can extract the true motion
of objects in a video, it may not be able to determine the ac-
tual motion in the real word if the camera was moving when
shooting a video. Global dynamic tracking can estimate the
motion of the camera and correct the weights of the motion
attention model. After local dynamic tracking is applied to
optical flow images, global dynamic tracking is used to re-
move the motion of the camera. Figure 5 presents the optical
flow with and without global dynamic tracking when a human
is in the center of a video.

Fig. 6. Comparison between dynamic tracking attention with
and without adjustment.

3.2. Adjustment of motion attention weight map

In the proposed DTAM, objects that move faster are given
greater weights. Figure 6 compares the images that are ob-
tained by dynamic tracking attention with and without adjust-
ment. The middle of the figure presents the dot product of the
weight map without adjustment and the original image. The
right hand side of the figure presents the map with adjustment.

The dynamic-tracking generated optical flow image has
values around 128 where the range of brightness is between 0
and 255. If the weights are used directly, then most pixels in
the optical flow image will have weights around 128. There-
fore, the difference from 128, which is the middle value, is
used as the new weight for each pixel.

4. EXPERIMENTS

4.1. Experimental Setup

The UCF-11 dataset [23] contains 1599 videos with 11
classes of actions, which are bike-riding, diving, golfing,
football-playing, high jumping, horse-riding, basketball-
shooting, volleyball-playing, swinging, tennis-playing, and
dog-walking. Training data were generated from 80% of
the videos of each class, and the remaining videos provided
the test data. GoogLeNet [6], which is trained using the
ILSVRC14 dataset [24], was adopted in the CNN feature
cuboid extraction stage of the attention models. In the experi-
ments, frames in videos were resized to 224×224 and feature
maps were chosen from the last convolutional layer with size
7×7 of GoogLeNet. The output motion attention maps of the
proposed DTAM were pooled to size 7×7.
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4.2. Experimental Results

4.2.1. Comparison of motion attention mechanisms

The motion attention mechanism that is used in the pro-
posed DTAM exhibits local dynamic tracking, global dy-
namic tracking, and weight adjustment. This subsection
compares the action recognition rates of the motion atten-
tion mechanisms using optical flow and our method. Table
1 presents the relevant experimental results. The motion at-
tention model using the original optical flow [21] achieves an
recognition rate of 83.83%. By contrast, our motion attention
mechanism achieves an recognition rate of 90.12%. The re-
sults reveal that our method improves the performance of the
motion attention model which is based on the optical flow.

Table 1. Evaluation of motion attention mechanisms.
Motion attention Recognition rate

Optical flow 83.83%

Ours 90.12%

4.2.2. Comparison between visual attention model and
DTAM

Table 2 presents the results that were obtained for each class
of actions using different attention models. The visual atten-
tion model used herein was proposed by Sharma et al. [25].
The combination of the proposed DTAM and the visual atten-
tion model is called the Visual+DTAM model.

Based on the results that were obtained using the visual
attention model and the DTAM, the visual attention model
provides a good recognition rate for riding a bike and playing
tennis, which are the actions about the interaction between a
human being and an object. For the actions of diving, high
jumping, and swinging, the DTAM performs better. The vi-
sual attention model classified basketball shooting with only
57.6% accuracy, as it wrongly classified many videos as high
jumping perhaps because the basketball is out of sight in some
frames, and the movements of the players in these wrongly
classified video include several jumps.

4.2.3. Overall comparison

Table 3 presents the recognition rates achieved in experi-
ments using different attention models and the combinations
of the visual and the proposed DTAM models (denoted by
Visual+DTAM) with different weights. The single three-
layered LSTM has a recognition rate of 86.52%, the visual
attention model has a recognition rate of 87.52%, and the
proposed DTAM achieves a recognition rate of 90.12%. The
different ratios (2:1, 1:1, and 1:2) of visual attention model
to the DTAM are examined, and the recognition rates are
88.92%, 90.12%, and 91.02%, respectively. It shows the

Table 2. Detailed evaluation of attention models in action
recognition rate.

Attention model Visual DTAM Visual+DTAM

Riding bike 100% 81.8% 95.5%

Diving 94.3% 97.1% 94.3%

Golfing 97% 97% 97%
Playing football 96.7% 96.7% 96.7%
High jumping 82.4% 97.1% 94.1%

Riding horse 96% 96% 98%
Basketball shooting 57.6% 72.7% 75.8%
Playing volleyball 96% 96% 96%

Swing 73.3% 83.3% 80%

Playing tennis 81.8% 72.7% 77.3%

Walking dog 90% 90% 90%

Table 3. Overall performance comparison.

Approach Recognition rate

LSTM 86.52%

Visual attention model [25] 87.72%

DTAM 90.12%

Visual+DTAM (2:1) 88.92%
Visual+DTAM (1:1) 90.12%
Visual+DTAM (1:2) 91.02%

proposed DTAM can obviously improve the performance of
action recognition.

5. CONCLUSIONS

This paper proposed a deep-learning action recognition sys-
tem that is based on a new motion attention mechanism, a
CNN, and an LSTM. This system combines the visual atten-
tion model with the proposed DTAM. Our motion attention
mechanism dynamically tracks moving objects based on in-
formation about motion that is extracted from the optical flow.
In the experiments, the proposed DTAM is compared with
the optical flow motion attention model, the visual attention
model, and a system without an attention model. The pro-
posed DTAM improves the recognition rates by 6.29%, 2.4%,
and 3.6%, respectively. Additionally, the combination of the
proposed DTAM and the visual attention model has a recog-
nition rate of 91.02%, which is 1% even higher than that of
using only the DTAM.
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