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ABSTRACT

Recently, non-fixed camera-based free viewpoint sports video
synthesis has become very popular. Camera calibration is an
indispensable step in free viewpoint video synthesis, and the
calibration has to be done frame by frame for a non-fixed cam-
era. Thus, calibration speed is of great significance in real-
time application. In this paper, a fast self-calibration method
for a non-fixed camera is proposed to estimate the homogra-
phy matrix between a camera image and a soccer field model.
As far as we know, it is the first time to propose constructing
feature vectors by analyzing crossing points of field lines in
both camera image and field model. Therefore, different from
previous methods that evaluate all the possible homography
matrices and select the best one, our proposed method only
evaluates a small number of homography matrices based on
the matching result of the constructed feature vectors. Exper-
imental results show that the proposed method is much faster
than other methods with only a slight loss of calibration accu-
racy that is negligible in final synthesized videos.

Index Terms— Camera Self-Calibration, Free Viewpoint
Sports Video, Homography Matrix, Field Model

1. INTRODUCTION

The appearance of Free Viewpoint Television (FTV) [1] and
Free Viewpoint Video (FVV) [2] has gained increasing at-
tention in multimedia signal processing and computer vision.
[3, 4, 5, 6, 7] In the applications of FTV and FVV, it is as-
sumed that the virtual viewpoints can be selected freely and
moved around, back and forth as well as up and down, [8]
bringing users an immersive and ultra-realistic experience.
In addition to enhancing user experience, other applications,
such as the Hawk-eye system [9] for ball tracking in the World
Cup 2014 and the recently held 2016 Rio-Olympics Games,
have demonstrated that free viewpoint techniques could be of
great assistance in sports games and athletic competitions.

As for general free viewpoint video systems [10, 11],
camera calibration is an indispensable step. Especially, for
free viewpoint sports video, field model-based camera self-
calibration is more flexible and popular. In automatic camera

Camera image Field model
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Fig. 1. Illustration of camera self-calibration for a soccer
game. (The black points and red points are selected to es-
timate a homography matrix.)

self-calibration, the homography matrix between a camera
image and a field model is estimated from the camera image
itself as shown inFig. 1. Generally speaking, the conven-
tional automatic self-calibration method involves two steps.
The first step is to find crossing points of field lines in a
camera image, and the second step estimates the homography
matrix according to the correspondence of crossing points be-
tween a camera image and a field model. However, the main
problem of such method is that exhaustive model matching
has to be carried out to evaluate all the possible homography
matrices and to select the best one. The processing speed
of such an exhaustive calibration method is not sufficient for
real-time application of a free viewpoint sports video system
using a non-fixed camera. For instance, the conventional
methods cannot synthesize free viewpoint video highlights of
the first half of a soccer match during the half-time break.

In this paper, we consider a fast automatic camera self-
calibration method for soccer videos based on a soccer field
model, and we propose the construction of a new feature vec-
tor of crossing points of field lines in camera images and the
field model. A large number of homography matrix estima-
tions and evaluations can be thereby avoided according to the
matching result of feature vectors. As far as we know, it is
the first time to construct a feature vector for crossing points
in camera calibration, and the proposed method reduces the
number of estimations and evaluations of a homography ma-
trix from hundreds of times to only several times.
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2. RELATED WORK AND OUR CONTRIBUTIONS

There have been several studies on automatic camera self-
calibration in sports video. Sudhir et al. [12] proposed a
calibration method to detect several predefined points on a
tennis court, but the method was not robust against the occlu-
sions of the court lines. In addition, Alvarez [13] proposed a
mathematical model for homography matrix estimation based
on analyzing the center circle of a soccer field. However, the
center circle was often not visible in camera images. A fun-
damental study was conducted by Farin et al. [14], where the
proposed method was composed of white field line extraction
and exhaustive model matching between the crossing points
in a camera image and the predefined points in a field model
to estimate all the possible homography matrices. However,
the exhaustive model matching was very time consuming
and impractical in real-time applications, especially when it
involved the calibration of a non-fixed camera. Later, Farin
et al. [15] proposed a fast calibration method which was
based on RANSAC line parameter estimation. However, the
RANSAC-based method still produced unreliable field lines,
which led to inaccurate homography matrix. Recently, Yao
[16] proposed an automatic camera self-calibration method
that introducted a histogram of extracted field lines in a cam-
era image to provide a robust calculation of crossing points
and reduce the calibration time. However, similar to the
work in [14] and [15], there was no additional information on
the calculated crossing points, and hence exhaustive model
matching was unavoidable.

In this paper, based on our previous work [16], we pro-
pose the construction of a feature vector of crossing points in
camera images and a field model. The directional pattern of a
crossing point is analyzed and expressed as a numerical value.
Therefore, a 4D feature vector is constructed by analyzing
four crossing points in a camera image, and the 4D feature
vector is matched with all the 4D feature vectors in the field
model. According to the feature vector matching result, only
a few homography matrices are estimated as the candidates
and evaluated using a back projection method. Therefore, the
number of homography matrix evaluations, which accounts
for most of the calibration time, is greatly reduced. Experi-
mental results show that the proposed method is effective and
remarkably faster than other previous methods.

The remainder of this paper is organized as follows. In
the third section, the proposed method is presented in detail.
The experimental results are shown in section four, followed
by a brief conclusion in the last section.

3. PROPOSED METHOD

3.1. Field Line Image Extraction

Basically speaking, as shown inFig. 2(a), the color of a soc-
cer field in a camera imageIRGB is green and the color of the
field lines is white. However, due to the lighting conditions,

(a) Camera imageI (b) Field ground imageG

(c) Field line imageF

Fig. 2. Results of field line image extraction

color-based field extraction is too sensitive in an RGB color
space. Thus,IRGB is first converted to an HSV color space,
written asIRGB → IHSV . Next, several statistical thresh-
olds,σH

min, σH
max andσV

min are estimated to produce a soccer
field maskB by a labeling process

B(x, y) =
{

1, IH(x, y) ∈ [σH
min, σH

max]&&IV (x, y) > σV
min

0, otherwise.
(1)

where1 indicates ground area while0 indicates other area.
According to the labeled maskB, the soccer field ground

imageG is extracted, as shown inFig. 2(b). Following this, a
field line imageF is extracted on top of a field ground image
G by white color detection [14], represented as

F (x, y) =
{

255, G(x, y) > thw&&∆ < thgrad

0, otherwise
(2)

, where the field ground imageG has been converted into a
gray image.thw andthgrad are white color and pixel gradient
thresholds, respectively. In addition,∆ =| G(x, y) − G(x +
τ, y) | + | G(x, y)−G(x−τ, y) | + | G(x, y)−G(x, y+τ) |
+ | G(x, y) − G(x, y − τ) |, andτ is the distance used to
calculate the gradient of current pixelG(x, y). Therefore, a
clear field line imageF is extracted and shown inFig. 2(c).

3.2. Feature Vector Generation and Matching

Our key idea is presented in this subsection, and the pro-
posed feature vector construction of four crossing points is
described below.

After a clear field line image is extracted, the Hough trans-
form [17] is adopted to detect field lines in the field line image
F . The histogram based line selection method in [16] is mod-
ified to obtain parameters (a slope and an offset) of field lines.
In order to ensure that calculated crossing points are visible in
the camera image for subsequent feature vector construction,
more than two field lines are extracted first, and the field lines
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(a) Field lines in [16] (b) Field lines in this study

Fig. 3. Field line extraction and selection (Selected field lines
are highlighted in pink.)

Fig. 4. The 16 possible patterns of a crossing point

that produce four visible crossing points are finally selected.
A comparison between the selected field lines in [16] and in
this study is shown inFig. 3. It is clear that two crossing
points of the selected field lines are invisible inFig. 3(a). In
comparison, the selected field lines in this study produce four
visible crossing points in the camera image.

It is observed that a crossing point of field lines can be dis-
tinguished by the information of the four directions as shown
in Fig. 4. Therefore, a pattern of directional information for
a crossing point is defined by a 4-bit value, where each bit
value indicates whether one direction of the crossing point
exists or not. Without losing generality, UP, RIGHT, DOWN,
and LEFT are defined from the highest bit to the lowest bit.
In addition, we assume that the camera shooting direction is
known. Thus, the horizontal and vertical lines in a camera
image are easily distinguished.

Based on the definition and assumption above, we com-
pose a 4D feature vector to represent the four detected cross-
ing points in a camera image as shown inFig. 5. To be spe-
cific, the four crossing points(p1, p2, p3, p4) are formed as a
point setP = {p1, p2, p3, p4} and sorted in a clockwise or-
der according to the respective coordinates. In addition, the

p1 p2

p3p4

V = {1110, 0101, 1001, 1110}

Fig. 5. The illustration of a pattern combination of crossing
points in both camera image and field model

top-left point is always set as the starting one without losing
generality. For each crossing pointpi, it is acknowledged that
the information of two field linesliv, lih is available, and thus
we check the four directions of the crossing pointpi along
the directions ofliv and lih. According to the pattern defini-
tion mentioned above, the extracted patterns of four cross-
ing points inFig. 5 are characterized as a 4D feature vector
V = {1110, 0101, 1001, 1110} in binary format or written as
V = {14, 5, 9, 14} in decimal format. Similarly, various 4D
feature vectors of points in a field model can be generated and
prepared in advance.

Therefore, the exhaustive homography evaluation is sim-
plified as feature vector matching, which can greatly reduce
the complexity. Feature vector matching is represented as

Vcand= Vt, if ‖ V − Vt ‖l2< ε, (3)

whereV is the feature vector of the 4-point setP in a camera
image andVt is the feature vector of a 4-point setPt in a
field model. In addition,T is the number of selectedVcand
that keeps the matching error within a thresholdε, whereε =
0 if an exact matching is required and moreVcand will be
selected ifε is relaxed to a positive value. According to the
result of feature vector matching,P and the selectedPcand
are adopted in homography matrix estimation.

3.3. Homography Matrix Estimation and Evaluation

It is noted that a homography matrix,H, projects a pointp
in a plane to a pointq in another plane [18]. Therefore, we
assumep(x, y, z) as a crossing point in a camera image and
correspondinglyq(X,Y, Z) as a point in a field model. Thus,
there is x

y
z

 ∼

h11 h12 h13

h21 h22 h23

h31 h32 h33

 ·

X
Y
Z

 , (4)

If we define a normalization asx′ = x/z, y′ = y/z and
X ′ = X/Z, Y ′ = Y/Z, there is

x′ =
x

z
=

h11X
′ + h12Y

′ + h13

h31X ′ + h32Y ′ + h33

y′ =
y

z
=

h21X
′ + h22Y

′ + h23

h31X ′ + h32Y ′ + h33

(5)

Therefore, considering a homography matrix with eight de-
grees of freedom, four pairs of point correspondences be-
tweenP andPcandare adopted to calculateH.

Moreover, according toeq.(3), there might be multiple
candidates of feature vectorsVcand and point setsPcand.
Therefore, an evaluation method is adopted to finally obtain
the optimal homography matrix. It is assumed that the points
in field lines of a field model should be projected onto the
white lines of the corresponding field line image if there exists
an accurate homography matrix. Therefore, a penalty value
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dk of each projected point(x̂, ŷ) in the field line imageF is
calculated as {

dk = 1, if F (x̂, ŷ) ≥ thp

dk = −2, otherwise,
(6)

wherethp is the threshold value. Based on the definition of
dk in eq.(6), the optimal homography matrixHopt yields to

Hopt = argmax
H

∑
1≤k≤K

dk, (7)

whereK is the total number of points in the field model.

4. EXPERIMENTAL RESULTS

In order to verify the effectiveness of our proposed method,
we carried out tests on two soccer scenes captured by PTZ
cameras. The resolution of the camera is full HD and the
frame rate is 30fps. The parameters are set as follows. In
the field line image extraction,σH

min, σH
max andσV

min are es-
timated as 30, 75 and 40 respectively. In addition, two thresh-
oldsthw andthgrad are set as 145 and 40, and the valueτ is 4
in pixel gradient calculation. Finally, the thresholdthp is set
as 127 ineq.(6). All the parameters are fixed throughout the
entire experiment.

Th other methods in [14] and [16] are compared with our
proposed method. The camera shooting direction is prior in-
formation for the three methods. Basically, homography ma-
trix evaluation accounts for most of the time in camera self-
calibration. Therefore, for simplicity, we consider the number
of homography matrix evaluations as the cost of calibration.

The comparison of calibration cost is shown inTable 1.
The second row inTable 1 shows the numberD of feature
vectors in a camera image. The method in [16] and our pro-
posed method detected two horizontal and two vertical lines
in the calculation of crossing points in a camera image. Thus,
there is only one feature vector in camera image. In compar-
ison, the method in [14] detected at least three vertical and
three horizontal lines, producing at least nine possible feature
vectors. The third row inTable 1 shows the number,T of
feature vector candidates in a soccer field model. For an ex-
haustive search,T =

(
6
2

)
×

(
7
2

)
= 315 because there are6

horizontal lines and7 vertical lines in the soccer field model
as shown inFig. 1. In comparison, an exhaustive search is
not necessary in our proposed method, and the specific num-
ber of searches depends on the 4D feature vector of a camera
image. According to the value ofε = 10 in our experiment,T
may be different numbers, such as 4, 9, 11, and 16. Therefore,
T ≤ 20 is a reasonable result for the proposed method. Fur-
thermore, the bottom row inTable 1 shows the running time
(ms) required to calibrate one frame (including homography
matrix estimation and evaluation), and it is verified that the
proposed method is much faster than the other two methods.

Finally, field model projection is adopted to evaluate the
calibration accuracy. The projected field lines are marked in

Table 1. A comparison of the calibration cost between the
proposed method and other methods for one frame

Calibration cost [14] [16] Proposal
# of V in image (D) 9 1 1

# of Vcand(T ) 315 315 ≤ 20
# of H evaluation 315 × 9 315 ≤ 20

Running time 18326 ms 1940 ms 85ms

(a) Scene 1 ([16]) (b) Scene 1 (proposed method)

(c) Scene 2 ([16]) (d) Scene 2 (proposed method)

Fig. 6. Comparison of calibration accuracy between of the
proposed method and previous method

yellow, and the comparison between the method described
in [16] and the proposed method is shown inFig. 6. Basi-
cally, the accuracy of the proposed method is slightly lower
than the accuracy in [16], and the main reason is that the se-
lected crossing points in the proposed method are limited in
a small area (goal area). However, such slight loss of calibra-
tion accuracy has virtually no effect on the final synthesized
free viewpoint soccer video, and note that calibration accu-
racy will be increased if the camera is zoomed out because
crossing points in a large area will be visible and used in the
proposed calibration method.

5. CONCLUSION

In this paper, a fast self-calibration method for a non-fixed
camera was proposed in order to synthesis free viewpoint soc-
cer videos. Different from any previous methods, as far as
we know, it was the first time to construct a feature vector of
crossing points, and a 4D feature vector was constructed by
analyzing the directional information of four crossing points.
Therefore, based on the result of feature vector matching, it
was not necessary to exhaustively calculate and evaluate all
the possible homography matrices, and hence the calibration
cost was greatly reduced. The experimental results showed
that the proposed method was much faster than other methods
with a slight loss of calibration accuracy that was negligible
in the final synthesized free viewpoint soccer video.
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