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ABSTRACT

Recent works have shown that hierarchical models lead to
significant improvement in human activity recognition, which
can not only enhance descriptive capability, but also improve
discriminative power. However, most existing methods ex-
ploit just one of the two advantages. In this paper, a new
hierarchical spatio-temporal model (HSTM) is proposed to
integrate feature learning into two-layer hierarchical classifi-
cation model simultaneously. On the one hand, the two-layer
model has sufficient descriptive capability. The bottom layer
aims at capturing spatial relations in each frame and learn-
ing high-level representations, and the top layer utilizes these
learned features to characterize temporal relations in the w-
hole video sequence. On the other hand, the hierarchical mod-
el has strong discriminative power. Both spatial similarity and
temporal similarity of activities are measured. Experimental
results show that the HSTM can successfully recognize hu-
man activities with higher accuracies on one-person actions
(KTH and UCF), human-human interactions (CASIA), and
human-object interactional activities (Gupta).

Index Terms— Activity recognition, hidden conditional
random field, hierarchical structure, spatio-temporal relations

1. INTRODUCTION

For human activity recognition, there are two important is-
sues: activity representation and activity classification. The
former is to extract descriptive features to represent activities
and the latter is to utilize such type features for correspond-
ing classification. Recent works have shown that hierarchical
models can construct long-range and multi-resolution depen-
dencies and lead to significant improvement on both respect-
s. However, most existing methods treat hierarchical models
as either hierarchical feature learning [1, 2] or hierarchical
classifier [3, 4], so that the advantages of hierarchical mod-
els are not fully exploited. In this paper, a new hierarchical
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PXM2016 014219 000025, 973 Program 2011CB302203, National Key
Technology R&D Program of China 2012BAH01F03, NSFB4123104 and
Engineering Research Council of Canada under Grant RGPIN239031.

spatio-temporal model (HSTM) is proposed to integrate fea-
ture learning into hierarchical classification model simultane-
ously.

For activity representation, some hand-designed features
[5, 6, 7, 23] are utilized to capture complex spatio-temporal
dynamics in activities, since spatial and temporal dependen-
cies are two key elements in modeling activity. Compared
with hand-designed features, hierarchical features learned by
deep architectures with multiple hidden layers [8, 9, 10, 11]
are more robust and portable. Therefore, we propose a two-
layer model where the bottom layer aims at describing spatial
relations in each frame and the top layer is utilized to char-
acterize temporal relations in the whole video. Besides, in
this two-layer model, some hierarchical features are learned
to capture more global or higher level representations. For
activity classification, hierarchical classification models [12,
13, 14] can be employed to recognize complex interactional
activities due to their strong modeling capability and discrim-
inative power. The limitation is that the relationships between
different layers are separated. Rather than making a decision
based on the last layer alone, parameters in the HSTM are
trained jointly and both two layers have contributions to the
final classification.

In summary, the HSTM has three advantages: 1) Integrate
hierarchical and structural information into the interpretation
process by constructing HSTM on spatial scale and temporal
scale, such that all levels of spatio-temporal relations are cap-
tured to enhance descriptive capability. 2) Convert raw obser-
vations to some high-level semantic representations to com-
bine the flexibility of local features with the discriminability
of global features in a consistent multi-layer framework. 3)
Derive a joint learning algorithm to train parameters efficient-
ly and effectively, and this makes both spatial similarity and
temporal similarity of activities be measured together to ob-
tain superior classification ability. The HSTM fully exerts the
advantages of hierarchical models in both activity representa-
tion and activity classification.

2. HIERARCHICAL SPATIO-TEMPORAL MODEL

The hierarchical spatio-temporal model is a discriminative
model that directly estimates the probability of output con-
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Fig. 1. The graphical representation of HSTM. The HST-
M incorporates two layers of hidden nodes denoted as spa-
tial layer and temporal layer, which are connected by black
lines and blue lines respectively. In addition, there exists
a feature learning process between the two layers, depicted
by red dashed lines. In this figure, gray nodes represent ob-
served variables, white nodes denote unobservable variables
and shadow nodes are the variables which can be learned. The
HSTM models activity in spatial and temporal domain jointly.

ditioned on the whole observations. Our aim is to learn a
mapping from observation X to activity label y, which can
match the training data well. This conditional probabilistic
model can be formulated as,

P (y|X;θ) =

∑
h∈H

exp (E(y,h,X;θ))∑
h∈H,ŷ∈Y

exp (E(ŷ,h,X;θ))
, (1)

where Y denotes the possible activity label set and ŷ is
a member of Y; H refers to the hidden state set; h are a
set of hidden variables introduced to model complex intra-
variations and each hidden variable takes a value from H;
and the denominator is a partition function which plays a role
of normalization. The E(y,h,X;θ) represents the potential
function parameterized by θ, which can model various de-
pendencies among variables depending on the definition form
and model structure.

The graphical representation of the new hierarchical
spatio-temporal model proposed in this paper is depicted
in Fig. 1. It is a two-layer HCRF model, consisting of spatial
layer and temporal layer. The spatial relations of local patch-
es within a frame are modeled by a tree structured graph with
nodes from the spatial layer. To capture the temporal relations
between neighboring frames, hidden nodes in the temporal
layer are connected as a chain. Moreover, a feature learn-
ing process is adopted to convert raw observations to some
high-level semantic representations, which is equivalent to
aggregating evidences from local to global level.

2.1. Potential functions of HSTM

To avoid making a decision about which layer is more appro-
priate for recognition, both two layers have contributions to
the final classified result. It can be noted that besides the tem-
poral layer, there also exists a potential function between the
spatial layer and the activity label. Therefore, the potential
function of HSTM can be defined as the form of a sum,

E(y,h,X;θ)=ET(y, hT,XT; θT)+

K∑
t=1

ES(y, hSt ,X
S
t ; θS), (2)

where K denotes the number of frames in an activity; XS
t

refer to the observations in the spatial layer at time t and hSt
are their corresponding spatial hidden variables; XT denote
the observations in the temporal layer and hT are their cor-
responding temporal hidden variables; θS and θT are the pa-
rameters in spatial and temporal layers respectively. The defi-
nitions of spatial potentials and temporal potentials are given,

ES(y, hSt ,X
S
t ; θS)=

∑
i

ESv (hSi,t, X
S
i,t; θ

S
v )+∑

i,j∈Et

ESe (y, hSi,t, h
S
j,t; θ

S
e )+

∑
i

ESl (y, hSi,t; θ
S
l ),

(3)

ET (y,hT , XT ; θT ) =

K∑
t=1

ETv (hTt , X
T
t ; θTv )+

K∑
t=2

ETe (y, hTt−1, h
T
t ; θ

T
e )+

K∑
t=1

ETl (y, hTt ; θ
T
l ),

(4)

where i, j, t are nodes in HSTM and Et denotes the edge set in
the spatial layer at time t created by minimum spanning tree.

There are three kinds of potentials in HSTM, which
can be defined as a linear production of parameters and
features. The feature-related potentials which model the
semantic relationships between features and hidden nodes
include ESv (hSi,t, X

S
i,t; θ

S
v ) =

∑
nX

S
i,t.1{hSi,t = h̄Sn}.θSvn and

ETv (hTt , X
T
t ; θTv ) =

∑
nX

T
t .1{hTt = h̄Tn}.θTvn. Where h̄Sn

and h̄Tn are the n-th spatial and temporal hidden state respec-
tively; XS

i,t refers to the i-th observation in the spatial layer
at time t and hSi,t is its corresponding hidden node; XT

t refers
to the observation in the temporal layer at time t and hTt is
its corresponding hidden node; θSv are the parameters of spa-
tial feature-related potential, and XS

i,t.θ
S
vn can be interpreted

as how likely the local patch XS
i,t is assigned as the hidden

state h̄Sn ; θTv are the parameters of temporal feature-related
potential, and XT

t .θ
T
vn describes how likely the frame XT

t

is assigned as the hidden state h̄Tn ; 1{hSi,t = h̄Sn} denotes
an indicator function, which is 1 if hSi,t = h̄Sn ; otherwise
it is 0. The activity-related potentials which evaluate the
compatibilities between activities and hidden nodes con-
tain ESl (y,hSi,t; θ

S
l ) =

∑
n

∑
ŷ∈Y1{y = ŷ}.1{hSi,t = h̄Sn}.θSlŷn

and ETl (y,hTt; θ
T
l ) =

∑
n

∑
ŷ∈Y1{y = ŷ}.1{hTt = h̄Tn}.θTlŷn.
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Where θSl are the parameters of spatial activity-related po-
tential, and its entry θSlŷn computes how possible the activity
ŷ contains a local patch with hidden state h̄Sn ; θTl are the
parameters of temporal activity-related potential, and its en-
try θTlŷn represents how possible the activity ŷ contains a
frame with hidden state h̄Tn . The structure-related potentials
model the motion constraints of a pair of hidden states in
a specific activity class, consisting of ESe (y, hSi,t, h

S
j,t; θ

S
e )=∑

ŷ∈Y
∑
n

∑
m 1{hSi,t=h̄

S
n} · 1{hSj,t=h̄

S
m} · 1{y=ŷ} · θSeŷnm

and ETe (y, hTt−1, h
T
t ; θTe ) =

∑
n

∑
m

∑
ŷ∈Y 1{hTt = h̄Tn} ·

1{hTt−1=h̄
T
m} ·1{y=ŷ} ·θTeŷnm. Where θSe are the parameters

of spatial structure-related potential, and its entry θSeŷnm esti-
mates how likely a frame contains a pair of local patches with
hidden states h̄Sn and h̄Sm, when given the activity ŷ; θTe are
the parameters of temporal structure-related potential, and its
entry θTeŷnm measures how possible a video contains two con-
secutive frames with hidden states h̄Tn and h̄Tm conditioned on
the activity ŷ. Intuitively, the spatial hidden state associates
with the “body part label”, while the temporal hidden state
corresponds to the “pose label”.

2.2. Learning two high-level features

In this paper, observations consist of raw features and high-
level features. STIPs [15] are extracted as raw features and
XS
i,t denotes the feature vector describing appearance of

the i-th local patch at time t. The high-level feature XT
t

learned from the spatial layer is the overall characteriza-
tion of the t-th frame. Since the learned spatial hidden
variables are compact and semantic, they are used as the
basic elements to generate the high-level representation-
s. The XT

t can be decomposed as the individual features
Γv(hSt ) = {Γvn,y(hSt )|h̄Sn ∈ HS , y ∈ Y} and the interaction-
al features Γe(hSt ) = {Γen,m,y(hSt )|h̄Sn , h̄

S
m ∈ HS , y ∈ Y},

which characterize high-level components and their spatial
dependencies respectively,

Γvn,y(hSt ) =
∑
i

p(hSi,t = h̄Sn |y,XS
t , θ

S)

=

∑
i

∑
hS
i,t=h̄

S
n

exp (ES(y, hSt , X
S
t ; θS))∑

hS
t ∈HS ,ŷ∈Y

exp (ES(ŷ, hSt , X
S
t ; θS))

,

(5)

Γen,m,y(hSt )=
∑
i,j∈Et

p(hSi,t= h̄Sn , h
S
j,t= h̄Sm|y,XS

t , θ
S)

=

∑
i,j∈Et

∑
hS
i,t=h̄

S
n

∑
hS
j,t=h̄

S
m

exp(ES(y, hSt ,X
S
t ;θS))∑

hS
t ∈HS ,ŷ∈Y

exp (ES(ŷ, hSt , X
S
t ; θS))

,

(6)

where HS is the spatial hidden state set; the two marginal
probabilities p(hSi,t = h̄Sn |y,XS

t , θ
S) and p(hSi,t = h̄Sn , h

S
j,t =

h̄Sm|y,XS
t , θ

S) can be calculated by belief propagation. From
another perspective, it has some similarities to the deep learn-
ing paradigm. The spatial layer can be seen as applying a
soft-max function over the potentials across all the labels at
each local patch and the high-level features can be obtained
by a process which is something like structured pooling.

2.3. Training and inference for HSTM

In contrast with other hierarchical models, we jointly opti-
mize model parameters for HSTM. We run Quasi-Newton on
the log-likelihood to learn the optimal solution. Given train-
ing videos {Xi, yi}Mi=1, the objective function is defined as,

θ∗ = arg max
θ

M∑
i=1

L(i,θ)

=arg max
θ

M∑
i=1

log

∑
h∈H

exp (E(yi,h,Xi;θ))∑
h∈H,y∈Y

exp (E(y,h,Xi;θ))
− 1

2σ2
||θ||2.

(7)

The first term denotes the log-likelihood on training data and
the last is a Gaussian regularization term.

The traditional training algorithm is not tractable for the
HSTM due to its hierarchical structure. Therefore, a bottom-
to-up strategy is adopted to jointly estimate parameters ef-
ficiently and effectively, which can limit the computational
complexity to linear to the number of layers. We can refor-
mulate the objective function,

max
θ

L(i,θ) = max
θ

log

∑
h∈H

exp (E(yi,h,Xi;θ))∑
h∈H,y∈Y

exp (E(y,h,Xi;θ))

≥ max
θT

log

∏
t p
S
i,yi,t

.(
∑

hT∈HT

exp(ET (yi, h
T,XT; θT)))∑

y∈Y

∏
t p
S
i,y,t.(

∑
hT∈HT

exp(ET (y, hT,XT; θT)))

= max
θT
L(i,θ|θS

∗
), (8)

where only the i-th training sample {Xi, yi} is considered for
description convenience and the regularization term is also
omitted. L(i,θ|θS∗

) is an approximation of L(i,θ), when
given θS

∗
. The well optimized marginal posterior probability

of the t-th frame in the i-th video conditioned on class y is
defined as pSi,y,t =

∑
hS
t ∈HS exp (ES(y, hSt , X

S
t ; θS

∗
)) and

the parameters in the spatial layer can be estimated by,

θS
∗
=arg max

θS

K∑
t=1

log

∑
hS
t ∈HS

exp (ES(yi, h
S
t , X

S
t ; θS))∑

hS
t ∈HS ,y∈Y

exp (ES(y, hSt , X
S
t ; θS))

. (9)

In fact, the parameters are optimized to maximize a lower
bound of likelihood function of the complete HSTM by split-
ting model into local layers and integrating statistics over all
of them. The training procedure is outlined in Algorithm 1.
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Table 1. Accuracy of the HSTM compared to other related methods on the KTH, UCF, CASIA and Gupta video dataset.

KTH Accuracy UCF Accuracy CASIA Accuracy Gupta Accuracy

HCRF [20] 92.51% CNN [1] 75.8% CHMM [21] 76.14% HOI features [22] 93%

M3HBM [13] 97.99% ISA [8] 86.5% CODHMM [19] 83.28% Bayesian model [18] 93.34%

The HSTM 98% The HSTM 89.33% The HSTM 95.24% The HSTM 96.30%

Algorithm 1 Training Procedure for the HSTM.

1: Estimating the spatial parameters θS
∗

as (9);
2: Learning the high-level features for the temporal layer, as

(5) and (6);
3: Calculating the marginal posterior probabilities pSi,y,t;
4: Accumulating the approximation of the complete log-

likelihood L1(θ|θS∗
) =

M∑
i=1

L1(i,θ|θS∗
);

5: Utilizing Quasi-Newton algorithm to estimate model pa-
rameters θ∗ = arg max

θ∗\θS∗
L1(θ|θS∗

);

Given the optimal parameters θ∗, prediction of a new test
video X is to select y that could maximize the conditional
probability of our model y∗ = arg max

y∈Y
P (y|X;θ).

3. EXPERIMENTS

Our proposed model is a unified framework to recognize
one-person actions and interactional activities. We evaluate
performance of the HSTM on three tasks with four standard
benchmark datasets: one-person action recognition (KTH
[16] and UCF [17]), human-human interactional activity
recognition (CASIA [19]) and human-object interactional ac-
tivity recognition (Gupta [18]). Except for the CASIA, where
five trajectory based features [19] are extracted, we adopt the
same raw features (STIPs) for the other three datasets.

In order to comprehensively evaluate performance of the
HSTM, we compare it with several related models on the four
benchmark datasets shown in Table 1. These comparable ap-
proaches can be divided into three categories: 1) The related
graphical models: HCRF based models (eg.[20]) and HMM
based models (eg.[19, 21]). 2) The hierarchical feature learn-
ing: unsupervised hierarchical feature learning (eg.[8]) and
deep learning model (eg.[1]). 3) The hierarchical classifica-
tion model: multi-feature max-margin hierarchical Bayesian
model (eg.[13]). It can be seen that the HSTM is compara-
ble to all the state-of-the-art methods on the four datasets. In
particular, our model achieves a near-perfect accuracy on the
KTH (98%) and a huge improvement on the CASIA (about
12%). It strongly demonstrates that our HSTM combining
the advantages of both hierarchical feature learning and hier-
archical classification has stronger discriminative power and
descriptive capability.

Table 2. Compare the HSTM with its one-layer sub-models.

Algorithm KTH UCF CASIA Gupta

PFSL 34.35% 17.71% 58.98% 24.07%

PVSL 37.17% 18% 84.52 % 28.92%

RFTL 76.5% 58.67% 51.19% 59.26%

LFTL 97.67% 86.67% 92.86 % 88.89%

The HSTM 98% 89.33% 95.24 % 96.30%

For more detailed analysis, we evaluate whether our H-
STM is indeed better than one-layer models. To this end,
we compare the HSTM with the single spatial layer (PFSL
and PVSL) and the single temporal layer (RFTL and LFTL),
where Per-Frame in Spatial Layer is to classify every frame
independently; Per-Video in Spatial Layer is to achieve the
whole video label by majority voting; Raw Features in Tem-
poral Layer is to use the raw features as the observations of
the temporal layer; Learned Features in Temporal Layer is
the method which only applies the learned high-level features
and ignores the frame-level marginal posterior probabilities.
From the comparisons with the HSTM and its one-layer sub-
models in Table 2, it can find that the HSTM achieves the
highest accuracy and there is no one-layer representation that
is as discriminative as the hierarchical representation.

4. CONCLUSIONS

This paper proposes a new hierarchical spatio-temporal model
for both one-person action recognition and interactional activ-
ity recognition by modeling spatial constraints and temporal
constraints simultaneously. In the HSTM, the advantages of
hierarchical models on the aspects of both activity representa-
tion and activity classification are fully exploited. Firstly, the
descriptive capability is enhanced not only by integrating all
levels of spatio-temporal relations but also by combining the
flexibility of local features with the discriminability of global
features. Secondly, a joint learning algorithm with bottom-to-
up strategy is derived to train parameters efficiently and effec-
tively. Both spatial similarity and temporal similarity of ac-
tivities are measured together to obtain superior classification
ability. We evaluate the HSTM on the KTH, UCF, CASIA
and Gupta video dataset and obtain better recognition results
compared with state-of-the-art methods.
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