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ABSTRACT
Phase Congruency (PC) can highlight small discontinuities in
images with varying illumination and contrast using the con-
gruency of phase in Fourier components. PC can not only
detect the subtle variations in the image intensity but can also
highlight the anomalous values to develop a deeper under-
standing of the images content and context. In this paper, we
propose a new method based on PC for computational seismic
interpretation with an application to subsurface structures de-
lineation within migrated seismic volumes. We show the ef-
fectiveness of the proposed method as compared to the edge-
and texture-based methods for salt domes boundary detection.
The subjective and objective evaluation of the experimental
results on the real seismic dataset from the North Sea, F3
block show that the proposed method is not only computa-
tionally very efficient but also outperforms the state of the art
methods for salt dome delineation.

Index Terms— Image Understanding, Labeling, Com-
putational Seismic Interpretation, Phase Congruency, Salt
domes, Fourier Transform.

1. INTRODUCTION

Phase Congruency (PC) originally proposed by Morronne et
al. [1] and modified by Kovesi [2] is an edge detection ap-
proach based on the observation that the pixels along edges
have Fourier components that are maximally in phase. PC is
superior to gradient-based methods due to the fact that PC is
a dimensionless quantity that is not affected by the changes in
image illumination and contrast thereby making it practicable
for images with dominating and inconspicuous edges. PC has
been successfully applied to various fields which require ac-
cess to the minute details of intensity and texture variations
in image content. Among many, few examples of such ap-
plications include noise removal [3], detecting blood vessels
in retinal images [4], detecting lung diseases in chest radio-
graphs [5] and detecting defects in textile fabric images [6]. In
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seismic interpretation, Russell et al. [7] and Kovesi et al. [8]
showed the efficacy of PC by detecting seismic discontinuities
and velocity anomalies in migrated seismic volumes, respec-
tively. However, to the best of our knowledge, PC has not
been utilized for segmenting geophysical images that have
chaotic structures and varying textures in seismic volumes
such as salt domes.

The evaporation of water from the geological basins gives
rise to the depositions of salt evaporites. Over the long pe-
riods of time, these evaporites because of their low density
break through the sediment layers and surrounding rock strata
such as limestone and shale to form a diapir shaped structure,
called salt dome. Salt domes are important geophysical struc-
tures that contain hints about petroleum and gas reservoirs.
By observing the intensity and texture variations of the seis-
mic traces near salt dome boundary in migrated seismic vol-
umes, experienced interpreters can manually delineate their
boundaries. However, with the striking increase in the size of
seismic data over the last few years, researchers in academia
and industry have utilized semi-automated seismic interpreta-
tion software and tools to overcome the time consuming and
labor intensive manual interpretation. Researchers have pro-
posed several methods based on edge detection [9–11], tex-
ture [12–14], active contours [15, 16], saliency [17, 18] and
different image processing techniques [19–21] to delineate
salt domes within migrated seismic volumes. In this paper,
we present a novel approach for salt dome delineation based
on an attribute map obtained from phase congruency. The
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Fig. 1: Phase congruency in Fourier components.
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Fig. 2: Phase Congruency: Fourier coefficients addition.

proposed method leads to improved salt dome delineation by
accurately and efficiently detecting the presence of strong and
weak seismic reflections using the PC attribute map. The rest
of paper is organized as follows: a brief theoretical back-
ground of PC is given in section 2, the details of the pro-
posed method and computational seismic interpretation are
discussed in section 3, the experimental results and their dis-
cussions are presented in section 4 followed by the conclu-
sions in section 5.

2. PHASE CONGRUENCY

Morrone et al. [1] proposed phase congruency, which defines
image features as the points at which the phase of all the
Fourier components are maximally in phase. Figure 1 illus-
trates a square waveform labeled in solid green color, its first
four Fourier components in dashed color lines, and the sum-
mation of Fourier components in solid black line. The point
f , defined as edge, in Fig. 1 depicts an instant at which the
phases of all Fourier components are maximally equal. To
understand the concept of phase congruency, let us consider
a 1D signal, which has N Fourier components, and at any
instant i they are represented by amplitude An(i) and phase
φn(i), respectively. If we add the Fourier components at any
instant i according to the head to tail rule on complex axis as
shown in Fig. 2, we get the local energy, |E(i)|, that is the
magnitude of the resultant vector from the origin to the end
point. Mathematically, PC can be written as

PC =
|E(i)|∑
nAn(i)

. (1)

PC varies between 0 and 1 corresponding to no and perfect
phase coherence, respectively. In perfect coherence, all the
complex Fourier components align together to form E(i) that
results in PC equal to 1. However, PC defined in (1) is highly
sensitive to noise because of vector normalization and be-
comes ill conditioned if Fourier components are very small.
Kovesi [2] developed a modified form of phase congruency
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Fig. 3: Typical image and its PC map.

that not only produces a more localized response but is also
more robust to noise. The modified PC measure by Kovesi
[2], which incorporates multiple filter orientations and robust-
ness to noise is given by

PC =

∑
o

∑
nWo(i)bAno(i)∆Φno(i)− Toc∑

o

∑
nAno(i) + ε

, (2)

where o represent different orientations, Ano(i) and Φno(i)
represents the amplitude and phase of Fourier components
at different instants and orientations, respectively. ε is small
positive real number in the neighborhood of zero to avoid di-
vision by zero, To is the estimated noise influence at each
orientation o, ∆Φno(i) defines the phase deviation and bc de-
fines soft thresholding, which means that the enclosed term is
equal to itself when its positive, and zero otherwise. Wo(i) is
the weighting function at orientation o constructed by apply-
ing the sigmoid function to the filter response spread value. A
typical grayscale image and its PC map are shown in Fig. 3a-
b, which show that the PC map effectively highlights the tex-
ture, edges, and corners in the image.

3. COMPUTATIONAL SEISMIC INTERPRETATION

In this paper, we propose a novel process for the computa-
tional interpretation of salt domes as shown in Fig. 4. Given a
3D seismic volume V of sizeX×Y ×T , whereX represents
crosslines, Y represents inlines and T represents time depth,
we apply pre-processing operations such as noise removal and
image enhancement to yield a 3D seismic data volume Vp for
better seismic comprehension and features detection. We then
compute the PC attribute map, which highlights the salt dome
edges and different geological features in a seismic image.
To highlight the boundary regions of salt domes, we assume
that the histogram of points in the PC map follows a bimodal
distribution and we optimally divide all these points into two
classes. We then determine the adaptive threshold Th by max-
imizing the inter-class variance using the Otsu’s method [22]
as

arg max
Th

{(
Th−1∑
i=0

p(i)

)
(µ1(Th)− µ2(Th))

}
, (3)
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Fig. 4: Proposed process for the seismic interpretation of salt domes.

(a) Seismic volume containing salt dome
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(b) The PC map of inline #366

Fig. 5: Seismic volume and PC attribute map.

where p(i) represents the probabilities of points with gray
value i. We assume there are K quantized gray-levels of
PC attribute map, and µ1(Th) and µ2(Th) represent the mean
values of first and second classes, respectively. The adaptive
threshold, Th, when applied to PC map as shown in (4) yields
a binary volume B of same size as that of V and the white
regions in B highlight the salt dome boundaries.

B[x, y, t] =

{
1 PC[x, y, t] ≥ Th
0 Otherwise

. (4)

The salt domes are complex geological structures and it is in-
evitable that B contains noisy and disconnected parts. To get
rid of the noise and detect a salt body S from binary volume
B, we apply region growing method by randomly selecting
an initial seed point, ps, and grow it pixel-wise until it hits the
salt dome boundary. The seed point for region growing can
be selected either manually by the seismic interpreter or auto-
matically by centroid, directionality or tensor-based methods.
In manual ps selection, the seismic interpreter can interac-
tively choose either one seed point, or multiple seed points to
speed up the region growing, provided all the selected seed
points lie inside salt body. Given the computational complex-
ity and the error rate of automatic seed point selection meth-
ods, we have selected the initial seed point manually in this
paper. The region growing method yields a binary volume
of salt body, S, and in order to extract the salt dome bound-
ary from binary volume S, we apply post-processing opera-
tions that include dilation and perimeter extraction to label the
boundary on top of seismic section inline.

4. EXPERIMENTAL RESULTS

In this section, we present the effectiveness of the proposed
method for seismic interpretation, specifically for salt dome
delineation on the real seismic dataset acquired from the
Netherlands offshore, F3 block in the North Sea [23]. The
seismic volume that contains the salt dome structure has an
inline number ranging from #151 to #501, a crossline number
ranging from #401 to #701, and a time direction ranging from
1,300ms to 1,848ms sampled every 4ms. The original seis-
mic volume containing salt dome and the PC attribute map of
seismic section inline #366 are shown in Fig. 5a and Fig. 5b,
respectively. It can be seen from the Fig. 5b that PC map ef-
fectively highlights the salt dome boundary. Figure 6a-d show
the results of proposed method, labelled in red, as compared
to the other salt dome delineation methods, with the ground
truth manually labeled in green. The magenta, yellow, and
blue color lines depict the output of methods proposed by
Aqrawi et al. [10], Berthelot et al. [12], and Shafiq et al. [13],
respectively. Subjectively, it can be observed that the pro-
posed method, which computes the image features based on
signal phase and Fourier components that makes it indepen-
dent of image illumination and contrast performs best among
all other methods. The proposed method highlights the salt
dome boundary very close to the ground truth as compared
to the other methods. To objectively evaluate the similarity
between the detected salt dome boundaries and the ground
truth, we have used the Fréchet distance based similarity in-
dex, SalSIM [14]. The SalSIM index varies between 0 and 1,
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(a) Seismic Section Inline #369
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(b) Seismic Section Inline #378
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(c) Seismic Section Inline #384
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(d) Seismic Section Inline #392

Fig. 6: Experimental results on different seismic section inlines. Green: Ground Truth, Magenta: Aqrawi et al. [10], Yellow:
Berthelot et al. [12], Blue: Shafiq et al. [13], Red: Proposed Method.

indicating the minimum and maximum similarity between the
two curves, respectively. The SalSIM indices of the detected
salt dome boundaries for different seismic section inlines are
depicted in Fig. 7, which illustrates that the proposed method
outperforms other methods in delineating seismic structures
and yields output very close to the ground truth. The mean
and standard deviation of SalSIM indices from inline #369 to
#392, and the computation time of a seismic inline for differ-
ent delineation methods are summarized in Table. 1, which
illustrates that the proposed method not only yields better
delineation results but is also computationally very efficient
as compared to the other methods for salt dome delineation.

5. CONCLUSIONS

In this paper, we have proposed a novel approach based on
the congruency of phase for salt dome delineation. The pro-
posed method is suitable for segmenting seismic volumes
having weak seismic reflections, varying illumination and
contrast. This paper outlines the process for salt domes de-
lineation which can be modified to capture other geological
structures such as chaotic horizons and faults in Earth’s sub-
surface as well. The subjective and objective evaluation of
the experimental results on the real seismic dataset show that
the proposed method not only outperforms the state of the
art methods for salt dome delineation but is also computa-
tionally less expensive. The proposed method is expected to

not only reduce the time for seismic interpretation but also
become a handy tool in the interpreter’s toolbox for delineat-
ing geological structures within migrated seismic volumes.
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Fig. 7: SalSIM indices of different delineation methods.

Table 1: Objective assessment of different methods.

Delineation Methods Mean Std. Dev. Time (s)
Aqrawi et al. [10] 0.8981 0.0509 0.2464

Berthelot et al. [12] 0.8533 0.0823 33.5447
Shafiq et al. [13] 0.9201 0.0114 63.3162
Proposed Method 0.9412 0.0110 0.2408
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