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ABSTRACT

Densely sampled dynamic geophysical data are often mod-
eled using principal components analysis (PCA, a.k.a. em-
pirical orthogonal function or EOF analysis) to provide con-
straints for their inversion with remote sensing techniques.
We show that overcomplete sparsifying dictionaries, gener-
ated using dictionary learning, provide a more informative
basis for geophysical signal representation. Relative to EOFs,
all the vectors in learned dictionaries represent significant
variance in the geophysical signals. Since many geophysical
inverse problems are ill-posed, this behavior makes learned
dictionaries ideal for both minimizing the solution dimension
and improving the resolution of parameter estimates. The
K-SVD algorithm is applied to ocean sound speed profile
(SSP) data. It is shown that learned dictionaries improves
SSP inversion resolution.

Index Terms— Dictionary learning, machine learning,
inverse problems, geophysics, oceanography

1. INTRODUCTION

Dictionary learning algorithms may provide optimal reg-
ularization bases for geophysical inversion. Inversion for
geophysical phenomena is typically ill-posed and requires
significant regularization to obtain physically plausible so-
lutions and moderate the size of the parameter search [1].
If many representative measurements are available, the di-
mension of the model typically is reduced using principal
component analysis (PCA) [2]. PCA, or empirical orthogonal
function (EOF, in the geosciences) analysis, provides a set
of orthogonal shape functions which describe the features of
largest variance in the data [2, 3]. However, this requirement
of orthogonality may limit the regularization effectiveness.

Many signals, including natural images [4, 5], audio [6],
and seismic profiles [7] are well approximated using sparsi-
fying dictionaries. Given a signal, a dictionary is defined here
as a set of `2-normalized vectors which describe the signal us-
ing few coefficients. The sparse processor is then an `2-norm
cost function with an `0-norm penalty on the number of non-
zero coefficients [8]. Signal sparsity is exploited for a number
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of purposes including signal compression and denoising [9].
Here, signal sparsity is exploited for inverse problem regular-
ization of dynamic geophysical phenomena.

Dictionaries of vectors that approximate a given class of
signals using few coefficients can be designed with dictionary
learning. A popular dictionary learning approach, the K-SVD
algorithm [9], based on vector quantization (VQ) [6], finds
a dictionary of vectors that optimally partition the data from
the training set such that the few dictionary vectors describe
each data example. Relative to EOFs, the learned dictionary
vectors are not constrained to be orthogonal and potentially
provide more optimal signal compression because the vec-
tors are on average, nearer to the signal examples [10]. Dic-
tionary learning has been applied in the geophysics commu-
nity to improve denoising results in seismics [11] and ocean
acoustics [12, 13].

In this paper, dictionaries describing 1D ocean sound
speed profile (SSP) data are generated using the K-SVD
algorithm and the reconstruction performance is evaluated
against EOF methods. In Section 2, the EOF methods and
sparse processing are briefly introduced. In Section 3, dic-
tionary learning and the K-SVD algorithm are described. In
Section 4, SSP reconstruction results are given using the two
methods. It is shown that each vector in the learned dictio-
naries explains more SSP variability than the leading order
EOFs trained on the same data. Further, it is demonstrated
that SSPs can be reconstructed up to acceptable error using
as few as one non-zero coefficient. This compression can
improve the resolution of ocean SSP estimates with negligi-
ble computational burden. More details of the approach and
further experimental results are available in a forthcoming
paper [14].

2. EOF AND SPARSE METHODS

EOF analysis seeks to reduce representation complexity of
continuously sampled space-time fields by finding spatial
patterns which explain much of the variance of the process.
These spatial patterns or EOFs correspond to the principal
components, from principal component analysis (PCA), of
the temporally varying field [3]. Here, the field is a collection
of ocean SSP anomaly vectors Y = [y1, ...,yM ] ∈ RK×M

which are sampled over K discrete points in depth and M
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instants in time. They are defined as

ym = cm − c̄ (1)

where cm ∈ RK is an observed K-point SSP and c̄ ∈ RK is
the mean SSP over M observations.

The singular value decomposition (SVD) [15] finds the
EOFs as the eigenvectors of YYT by

YYT = PΛ2PT, (2)

where P = [p1, ...,pL] ∈ RK×L are L EOFs (eigenvectors,
L = min(M,K)) and Λ2 = diag([λ21, ..., λ

2
L]) ∈ RL×L are

the total variances of the data along the principal directions
defined by the EOFs pl, with λ21 ≥ ... ≥ λ2L.

Since the leading-order EOFs often explain much of the
variance in Y, the representation of Y can be compressed by
retaining only the leading order EOFs P < K for reconstruc-
tion of ym. Each of the SSP anomaly vectors ym are approx-
imated as ym =

∑P
p=1 µppp, where the EOF coefficients µp

are solved as µp = pT
p ym. For ocean SSPs, usually no more

than 5 EOF coefficients have been used to reconstruct ocean
SSPs [16, 17].

A signal ym, whose model is sparse in the dictionary
Q = [q1, ...,qN ] ∈ RK×N , is reconstructed to an acceptable
error using few vectors qn [8]. The inversion for these sparse
coefficients is phrased as an `2-norm minimization problem
with an `0-norm penalization on the number of non-zero co-
efficients

x̂m = arg min
xm∈RN

‖ym −Qxm‖2 subject to ‖xm‖0 ≤ T, (3)

where xm ∈ RP is the vector of coefficients for Q, x̂m is
the sparse estimate of xm, and T is the number of non-zero
coefficients in the solution (T � K). The sparse reconstruc-
tion ŷm ∈ RK of the signal ym is then ŷm = Qx̂m. The
`0-norm constraint is non-convex and imposes combinatorial
search for the exact solution to (3). Here, orthogonal match-
ing pursuit (OMP) [18] is used as the sparse solver.

3. DICTIONARY LEARNING WITH K-SVD

The K-SVD algorithm [9] is inspired by the iterative K-means
for VQ codebook design [6]. The N columns of the dictio-
nary Q, like the entries in VQ codebooks, correspond to par-
titions in RK . However, they are constrained to have unit `2-
norm and thus separate the magnitude (coefficients xn) from
the shapes (dictionary entries qn) for the sparse processing
objective (3). When T = 1, the `2-norm objective in (3)
is minimized by the dictionary entry qn that has the great-
est inner product with example ym [8]. Thus for T = 1,
[q1, ...,qN ] define radial partitions of RK . This corresponds
to a special case of VQ, called gain-shape VQ [6]. For T = 1,
the sequential updates of the K-SVD provide optimal dictio-
nary updates for gain-shape VQ [6, 9]. Optimal updates to

the gain-shape dictionary will, like K-means updates, either
improve or leave unchanged the MSE and convergence to a
local minimum is guaranteed. For T > 1, convergence of the
K-SVD updates to a local minimum depends on the accuracy
of the sparse-solver used in the sparse coding stage [9].

The dictionary learning objective is

min
Q

{
min
X
‖Y −QX‖2F subject to ∀m, ‖xm‖0 ≤ T

}
, (4)

where X = [x1, ...,xM ] is the matrix of coefficient vectors
corresponding to examples Y = [y1, ...,yM ], and F is the
Frobenius norm. The K-means algorithm is generalized to
the dictionary learning problem as the two steps: 1) sparse
coding and 2) dictionary update.

In the K-SVD algorithm, each iteration i sequentially im-
proves both the entries qn ∈ Qi and the coefficients in xm ∈
Xi, without change in support. Expressing the coefficients as
row vectors xn

T ∈ RN and xj
T ∈ RN , which relate all exam-

ples Y to qn and qj , respectively, the `2-penalty from (4) is
rewritten as

‖Y −QX‖2F =

∥∥∥∥Y − N∑
n=1

qnxn
T

∥∥∥∥2
F

= ‖Ej − qjx
j
T ‖

2
F ,

(5)

where

Ej =

(
Y −

∑
n 6=j

qnxn
T

)
. (6)

Thus, in (5) the `2-penalty is separated into an error term
Ej = [ej,1, ..., ej,M ] ∈ RK×M , which is the error for all ex-
amples Y if qj is excluded from their reconstruction, and the
product of the excluded entry qj and coefficients xj

T ∈ RN .
An update to the dictionary entry qj and coefficients

xj
T which minimizes (5) is found by taking the SVD of Ej ,

which provides the best rank-1 approximation of Ej . How-
ever, many of the entries in xj

T are zero (examples which
don’t use qj). To update qj and xj

T with SVD, (5) must be
restricted to examples ym which use qj

‖ER
j − qjx

j
R‖

2
F , (7)

where ER
j and xj

R are entries in Ej and xj
T , respectively, cor-

responding to examples ym which use qj , and are defined as

ER
j =

{
ej,l

∣∣∀l, xjl 6= 0
}
, xj

R =
{
xjl
∣∣ ∀l, xjl 6= 0

}
. (8)

The K-SVD algorithm is given in Table 1.

4. EXAMPLE

We here apply dictionary learning to ocean SSP data from the
HF-97 acoustics experiment [19, 20], conducted off the coast
of Point Loma, CA. The reconstruction results are compared
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Given: Y ∈ RK×M , Q0 ∈ RK×N , T ∈ N, and i = 0
Repeat until convergence:
1. Sparse coding

for m = 1 : M
a: solve (3) for x̂m using OMP
b: X = [x̂1, ..., x̂M ]

2. Dictionary update
for j = 1 : N

a: compute reconstruction error Ej from (6)
b: obtain ER

j , xj
R corresponding to nonzero xj

T

c: apply SVD to ER
j : ER

j = USVT

d: update qi
j = U(:, 1), xj

R = V(:, 1)S(1, 1)
e: Qi+1 = Qi

i = i+ 1

Table 1: The K-SVD Algorithm [9]

with EOF methods. M = 1000 (15 point) profiles were used
for the training set. The SSPs were interpolated to K = 30
points using a shape-preserving cubic spline. EOFs were cal-
culated from (2) and learned dictionaries were generated with
the K-SVD algorithm (Table 1). The number of non-zero co-
efficients solved with OMP for each dictionary was held fixed
at exactly T non-zero coefficients. The initial dictionary Q0

was populated using randomly selected examples from the
training sets Y.

The HF-97 learned dictionary, with N = K and T = 1,
is compared to the EOFs (K = 30) in Fig. 1. Only the
leading order EOFs (Fig. 1(a)) are informative of ocean SSP
variability whereas all shape functions in the dictionary (Fig.
1(b)) are informative (Fig. 1(c)–(d)). By relaxing the require-
ment of orthogonality for the shape functions, the shape func-
tions are adapted to the data distribution and thereby achieve
greater compression. The Gram matrix G, which gives the
coherence of matrix columns, is defined for a matrix A with
unit `2-norm columns as G = |ATA|. Fig. 1(e) shows the
shapes in the EOF dictionary are orthogonal, whereas those
of the learned dictionary (Fig. 1(f)) are not.

4.1. Reconstruction of SSP training data

Reconstruction performance of the EOFs and learned dictio-
naries are evaluated on SSPs within the training set, using a
mean error metric. The coefficients for the learned Q and
initial Q0 dictionaries x̂m are solved from the sparse objec-
tive (3) using OMP. The least squares (LS) solution for the T
leading-order coefficients xL ∈ RT from the EOFs P were
solved by

xL = P+
Lym, (9)

where PL is the T leading order EOFs from P, and P+
L is its

pseudoinverse. The best combination of T EOF coefficients
was solved from the sparse objective (3) using OMP for Q =
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Fig. 1: (a) EOFs and (b) learned dictionary entries (N = K and
T = 1, sorted by variance σ2

qn
). Fraction of (c) total SSP variance

explained by EOFs and (d) SSP variance explained for examples
using dictionary entries. Coherence of (e) EOFs and (f) dictionary
entries.

P. The mean reconstruction error ME for the training set is

ME =
1

KM
‖Y − Ŷ‖1. (10)

The reconstruction error using the EOF dictionary is com-
pared to results from dictionaries Q with N = 3K, using
T non-zero coefficients. In Fig. 2(a) results are shown for
N = 90 dictionary entries. Coefficients describing each ex-
ample ym, were solved 1) from the learned dictionary Q, 2)
from Q0, the dictionary consisting ofN randomly chosen ex-
amples from the training set (to illustrate improvements in re-
construction error made in the K-SVD iterations), 3) the lead-
ing order EOFs, and 4) the best combination of EOFs. The
mean SSP reconstruction error using the dictionaries trained
for each sparsity T is less than EOF reconstruction, for either
leading order coefficients or best coefficient combination, for
all values of T shown. The best combination of EOF coeffi-
cients, chosen approximately using OMP, achieves less error
than the LS solution to the leading order EOFs, with added
cost of search.

Just one learned dictionary entry achieves the same ME
as more than 6 leading order EOFs, or greater than 4 EOFs
chosen by search (Fig. 2(a)). To illustrate the representational
power of the learned dictionary entries, both true and recon-
structed SSPs are shown in Fig. 3. Nine true SSP examples
from the training set are reconstructed using one learned dic-
tionary entry. It is shown for each case, that nearly all of the
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Fig. 2: (a) Mean reconstruction error (ME) versus T non-zero coeffi-
cients for SSPs using EOFs (solved using LS and OMP) and learned
dictionary (LD, N = 90). (b) Mean reconstruction error MECV for
extra-sample data calculated with K-fold cross validation for J = 10
folds.
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Fig. 3: True SSP reconstruction of 9 example profiles using one en-
try (T = 1) from learned dictionary (LD, N = 90).

SSP variability is captured using a single entry in Q.

4.2. Extra-sample SSP reconstruction

The extra-sample SSP reconstruction performance of learned
dictionaries and EOFs is tested using K-fold cross-validation
[15]. The SSP data set Y of M profiles is divided into J
subsets with equal numbers of profiles Y = [Y1, ...,YJ ],
where the fold Yj ∈ RK×(M/J). For each of the J folds: 1)
Yj is the set extra-sample test cases, and the training set Ytn

is

Ytn =
{
Yl

∣∣ ∀l 6=j

}
; (11)

2) the dictionary Qj and EOFs are derived using Ytn; and
3) coefficients estimating test samples Yj are solved for Qj

with sparse processor (3), and for EOFs by solving for leading
order terms and by solving with sparse processor. The extra-
sample error from cross validation MECV for each method is

then

MECV =
1

KM

J∑
j=1

‖Yj − Ŷj‖1. (12)

MECV increases over the within-training-set estimates
for both the learned and EOF dictionaries, as shown in Fig.
2(b) for J = 10 folds. The mean reconstruction error using
learned dictionaries, as in the within-training-set estimates, is
less than the EOF dictionaries. More than 2 EOFs, choosing
best combination by search, or more than 3 leading-order
EOFs solved with LS, are required to achieve the extra-
sample performance as one learned dictionary entry.

4.3. Solution space for SSP inversion

Acoustic inversion for ocean SSP is a non-linear problem.
One approach is coefficient search using genetic algorithms.
[2] Discretizing each coefficient intoH values, the number of
candidate solutions for T fixed coefficients indices is

Sfixed = HT . (13)

If the coefficient indices for the solution can vary, as per dic-
tionary learning with learned dictionary Q ∈ RK×N , the
number of candidate solutions Scomb is

Scomb = HT N !

T !(N − T )!
. (14)

Given the results in the last paragraph of Section 4.1, and as-
suming a typical H = 100 point discretization of the coeffi-
cients and an unknown SSP similar to the training set, the SSP
may be constructed up to acceptable resolution using one en-
try from the learned dictionary with 104 possible solutions.
To achieve the similar ME, 6 EOFs are required (1012 possi-
ble solutions), using fixed indices. The best EOF combination
requires 4 EOFs (1014 possible solutions).

5. CONCLUSION

Given sufficient training data, dictionary learning generates
optimal dictionaries for sparse reconstruction of a given sig-
nal class. Since these learned dictionaries are not constrained
to be orthogonal, the entries fit the distribution of the data
such that signal example is approximated using few dictio-
nary entries. Relative to EOFs, each dictionary entry is infor-
mative to the signal variability.

The K-SVD dictionary learning algorithm is applied to
ocean SSP data from the HF-97 experiment. The learned dic-
tionaries generated describe ocean SSP variability with high
resolution using fewer entries than EOFs. As few as one en-
try from a learned dictionary describes nearly all the variabil-
ity in each of the observed ocean SSPs. Provided sufficient
SSP training data is available, learned dictionaries can im-
prove SSP inversion resolution. This could provide improve-
ments to geoacoustic inversion [2,21], matched field process-
ing [22], and underwater communications [19].
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