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ABSTRACT 

 
This paper presents an image upsampling method. Joint-
bilateral filtering has been successfully applied to this 
problem that upsample “target” images using high-
resolutional “control” images. In this filtering, the kernel is a 
product of weights representing spatial proximity and color 
(or intensity) proximity of the “control” image. However, 
when the “target” image involves textures that are invisible 
in the “control” image, these textures are damaged by this 
upsampling. In the case of thermal target image and visible-
light control image, we can often find such textures. For 
solving this problem, we first propose trilateral upsampling, 
which is a simple extension of joint-bilateral upsampling 
incorporating color (or intensity) proximity weight in the 
“target” image. For improving this method so as to increase 
the spatial resolution, we introduce weight control based on 
local mutual information between target and control images. 
We confirmed that resulted images have higher spatial 
resolution and lower noise. 
 

Index Terms—Image upsampling, Bilateral filter, 
Trilateral Filter, Thermal image upsampling. 
 

1. INTRODUCTION 
 
Thermal images captured by Long Wave InfraRed (LWIR) 
cameras are useful for inspecting industrial plants, human 
health screening in airports, finding missing people or 
animals from air, night vision, and so on. However, LWIR 
has a severe limitation on spatial resolution, that is, high-
resolutional uncooled LWIR camera cannot be produced by 
current technology. The other possibility to produce high-
resolutional thermal image is upsampling. The upsampling 
can be done by a simple interpolation and joint-bilateral 
filtering[6], which produces a high-resolutional image from 
low resolutional “target” image and high resolutional 
“control” image. Figure 1 shows original thermal image (a), 
visible-light control image (geometrically calibrated by 
homography) (b), interpolation based upsampling (c), and 
bilateral upsampled image (d). As shown in Figure 1 (c), 
linear interpolation based upsampling image can have jaggy 

or blurred edges. On the other hand, joint-bilateral filtered 
upsampling in Figure 1 (d) have much sharper edges but the 
tie under the sweater and the reflection on the wall are both 
blurred. This is because some thermal textures are not visible 
in the control image. For solving this problem, we propose 
trilateral upsampling, which uses both visible-light and 
thermal images as control images. Also, we further improve 
this method by locally changing the weight of these control 
images depending on the local mutual information. 
 

2. RELATED WORKS 
 
Bilateral filtering[1] is a well known edge-preserving 
smoothing, whose kernel (bilateral weight) is the product of 

 
  (a) Original thermal image        (b) Visible light image 

(640x480)                     (1440x1080) 

   

   
(c) Linear-interpolation       (d) Joint-bilateral filter 

upsampling (1440x1080)     upsampling (1440x1080) 
Figure 1. Two different approaches to upsampling problem. 
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Gaussians in image plane and color space. This filtering is 
applied not only to edge preserving smoothing but also to 
many applications, e.g. depth map and saliency map 
upsampling[2], fusing flash and no-flash images[3], 
displaying images with high dynamic range[4], and so on. 
Other applications and extensions can be found in[5]. 

Bilateral filtering referring two images is called joint-
bilateral filtering, where the input image is filtered 
(upsampled, smoothed) by referring the control image. The 
control image is used mainly for computing bilateral weights. 

It is believed that the joint-bilateral filtering, using 
visible-light image as a control image, can be used for 
increasing the spatial resolution and reducing the noise[6].  

A drawback of bilateral filtering is its high computational 
cost. For solving this problem, many acceleration methods 
have been proposed. Approximation using the fixed size 
Gaussian filter in extended high dimensional space[7], 
decomposition to linear kernels and parallel execution[8], 
approximation by fixed size Gaussian filters applied to 1D 
pixel arrays that is transformed according to their geodesic 
distances[9], and so on. 
 

3. TRILATERAL UPSAMPLING 
 
Let  Ω = [0,1](  be the unit square in 2D plane. In this 
square, we define the rectangular grid Ω),*, 

Ω),* = 𝑖
𝑛 ,

𝑗
𝑚 𝑖 = 0,⋯ , 𝑛, 𝑗 = 0,⋯ ,𝑚 ⊂ Ω. (1) 

The problem scaling an image given on a grid Ω),* to that 
on  grid  Ω)2,*2 is usually called upsampling when the values 
𝑛3 > 𝑛 and 𝑚3 > 𝑚. 

We measure the distance on the grid Ω),* as 
𝒑 − 𝒒 ( = 𝑛((𝑝: − 𝑞:)( + 𝑚((𝑝> − 𝑞>)(, (2) 

where 𝒑 = (𝑝:, 𝑝>)?, 𝒒 = (𝑞:, 𝑞>)?and 𝒑, 𝒒 ∈ Ω. 
Suppose that two images 𝑇: Ω ↦ ℝE   and 𝑉: Ω ↦ ℝE 

represent thermal and visible-light images of the same scene.  
In these settings, while creating upsampled copy of the 

target image 𝑇 we would like to use information provided by 
the control image 𝑉. The solution is usually represented in the 
form of joint-bilateral filtering [7] as 

𝑇 𝒑 =
1

𝑊 𝒑
𝐺IJ 𝒑 − 𝒒 𝐺IK 𝑉 𝒑

L∈M 𝒑
− 𝑉 𝒒 ×ℐ 𝑇 𝒒 ,	 𝒑 ∈ Ω)2,*2 . 

(3) 

In this equation, we denote Gaussian kernel by 𝐺I, i.e., 

𝐺I 𝑥 = exp −
𝑥(

2𝜎(
, (4) 

and ℐ  represents some interpolation with the geometric 
transformation that corresponds pixels in 𝑉 and 𝑇, i.e., 𝑉 𝒑   
and ℐ 𝑇 𝒑  are the corresponding pixel values. 

As usual, the weighted pixel values are summed in the 
filter window 𝑁 𝒑  centered at point  𝒑. 

 Finally, the result is normalized by 
𝑊 𝒑 = 𝐺IJ 𝒑 − 𝒒 𝐺IK 𝑉 𝒑 − 𝑉 𝒒

L∈M 𝒑

. (5) 

 An example of bilateral upsampling is shown in Figure1. 
Original image obtained by the LWIR camera is shown in (a), 
the image of the scene obtained by the visible-light camera is 
(b). Upsampled image by Equation (3) is (d), where window 
size= 32×32 , 𝜎Y = 25 , 𝜎[ = 10 . As mentioned in the 
introduction, we can easily see that some thermal image 
edges are not preserved in (d). To be more specific, we can 
check easily that the tie under the sweater and silhouette on 
the wall are not preserved in the detail. This means that 
Equation (3) is acting as a simple Gaussian filter on that area.  

We can spot also that some details from visible-light 
image can be imprinted in the upsampled image. For example, 
the light sources on the celling are changed according to their 
shape on the visible-light image. Also there are imprinted 
details on the facial region. 

We can improve the above results by extending the control 
image of the filtering. That is, we can use the visible-light 
control image as well as thermal control image.  Our 
upsampling is given by 

𝑇 𝒑 =
1

𝑊 𝒑
𝐺IJ 𝒑 − 𝒒 𝐺IK 𝑉 𝒑 − 𝑉 𝒒

L∈M 𝒑
×𝐺I\ ℐ 𝑇 𝒑 − ℐ 𝑇 𝒒 ℐ 𝑇 𝒒 , 

(6) 

 

 
Figure 2. Result of trilateral filtering using Equation (6).  

Window size=32×32, 𝜎Y = 25, 𝜎] = 10, 𝜎[ = 10. 
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for 𝒑 ∈ Ω)2,*2 , where all the notation is the same as in 
Equation (3). Note that now we are modifying weights in the 
kernel with information from both images, which are 
captured by LWIR and visible-light cameras. Kernels 𝐺IK 
and 𝐺I\ are responsible for this modification. As can be seen 
there are three Gaussian kernels involved in this filtering, so 
we call this procedure trilateral filtering. 

The important property of this method is its robustness. 
When 𝑉 𝒑  is uniform, 𝐺IK 𝑉 𝒑 − 𝑉 𝒒  will be 
constant and Equation (6) works as a simple bilateral filter 
and interpolation based upsampling. Compared with this, 
Equation (3) works as a blurring filter in this case. Also, even 
if 𝑉 𝒑  is not correlated with ℐ 𝑇 𝒑 , smoothing over 
thermal texture will not occur by Equation(6). 

Result of this filter is shown in Figure 2. Compared with 
Figure 1(d), we can easily notice that details such as tie under 
the sweater, silhouette on the wall are the same as those 
presented in the original image. 
 

4. LOCAL TRILATERAL UPSAMPLING 
 

Trilateral upsampling can avoid the damage caused by the 
uncorrelated image regions between target and control 
images. However, since this method uses globally fixed 
weights, it also suppresses positive aspect of the joint-
bilateral upsampling, which produces high resolutional image. 
For combining the positive aspect of both, it is clear that we 
should control parameters 𝐺IK  and 𝐺I\  depending on the 
position 𝒑 . When thermal and visible-light images have 
strong relationship locally, then the color proximity 𝐺IK  of 
visible-light image should have bigger influence, otherwise 
intensity proximity 𝐺I\ of thermal image should be dominant. 

For evaluating the relationship between two images, we 
employ mutual information. Given two discrete random 
variables 𝑋 and 𝑌, with probabilities 𝑃a and	𝑃b respectively, 
and with joint probability 𝑃a,b  , mutual information 𝜇 of the 
variables 𝑋 and 𝑌  can be given as 

𝜇a,b = 𝑃a,b(𝑥, 𝑦)log
𝑃a,b(𝑥, 𝑦)
𝑃a(𝑥)𝑃b(𝑦)>∈h b:∈h a

, (7) 

where 𝑅(𝑋) and 𝑅(𝑌) represent the domains of the random 
variables 𝑋 and 𝑌, respectively.  

Figure 4 shows an example of local mutual information 
map between thermal and visible-light images.  

For red, green and blue channels in the visible-light image, 
we interpret the values of the intensities in the given window 
𝑁(𝒑) as a random variable 𝑌𝑟, 𝑌𝑔 and 𝑌𝑏. We also interpret 
the intensity values of the thermal image in the given window 
𝑁(𝒑) as random variable 𝑋. For color channel 𝑐, we compute 
the mutual information 𝜇b[,a(𝒑)  between variables 𝑌𝑐  and 
𝑋  at pixel 𝒑 . Based on the mutual information, standard 
deviations of the color channels and thermal image, at the 
pixel 𝒑, are defined as 

𝜎],n(𝒑) = 𝜎 1 + (𝜇bo,a(𝒑))( , 𝜎[,n(𝒑) = 𝜎 pq(rso,t(𝒑))u

rso,t(𝒑)
 ,  (8) 

𝜎],v(𝒑) = 𝜎 1 + (𝜇bw,a(𝒑))( , 𝜎[,v(𝒑) = 𝜎
pq(rsw,t(𝒑))u

rsw,t(𝒑)
 ,  (9) 

𝜎],x(𝒑) = 𝜎 1 + (𝜇by,a(𝒑))( , 𝜎[,x(𝒑) = 𝜎
pq(rsy,t(𝒑))

u

rsy,t(𝒑)
 ,  (10) 

𝜎] =
1

1
𝜎],n(

+ 1
𝜎],v(

+ 1
𝜎],x(

		, (11) 

where 𝜎 > 	0 is the hyper parameter of this method.  
Finally, we can describe our filtering as follows 

𝑇 𝒑 =
1

𝑊 𝒑
𝐺IJ 𝒑 − 𝒒 	

L∈M 𝒑
×𝐺I\ ℐ 𝑇 𝒑 − ℐ 𝑇 𝒒 	
×𝐺IK,oIK,wIK,y 𝑉 𝒑 − 𝑉 𝒒 ℐ 𝑇 𝒒 ,		 

(12) 

for 𝒑 ∈ Ω)2,*2, where 

log𝐺IK,oIK,wIK,y 𝑥 = −
1
2

𝑥n(

𝜎[,n(
+
𝑥v(

𝜎[,v(
+
𝑥x(

𝜎[,x(
, (13) 

for 𝒙 = (𝑥n, 𝑥v, 𝑥x){.  
It is clear that when the mutual information is high the 

standard deviation of the control image remains bounded, 
while the standard deviation of the thermal image becomes 
bigger. The result of local mutual information is shown in 
Figure 3. 

Figure 4 shows the result of local trilateral upsampling. 
Compared with other upsampling methods, it can clearly be 
seen that noise level is quite small but also jags are reduced. 
Figure 5 shows the log histogram of horizontal derivative. 
The sharper peak of this histogram represents that the noise 
level is low. The wider support represents high-frequency 
component including textures and jags. Linear interpolation 
produces wider peak and narrower support. This means high 
noise level and high frequency component is blurred. 
Trilateral and local trilateral produce low noise level images. 
The support of local trilateral result is bit narrower than that 
of trilateral. This is because jags in trilateral result are relaxed 
by local parameter control. 

 
Figure 3. Local mutual information by Equation (7). 
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Other examples are shown in Figure 6. 
   

5. CONCLUSIONS 
 

In this paper, we presented the followings. 
• Bilateral upsampling imprints control image on the filtered 

image. This breakdown may cause every image pairs 
having inconsistent edges or textures. 

• Trilateral upsampling that uses spatial proximity weight, 
color similarity weight of control image, and intensity 
similarity weight of the target image. This setting prevents 
the breakdown. 

• We further introduce local parameter control for 
improving spatial resolution. The local trilateral 
upsampling improves the noise and spatial resolution in 
the upsampled images. 
Current local trilateral upsampling changes σ_o and σ_c 

depending on µ, but the mapping is defined in an ad hoc 
manner. The optimization of this mapping and the 
acceleration of this method will be done in the future works.  
 

 

 
Figure 4. Result of local trilateral filtering using Equation (12). 

Window size=32×32, 𝜎Y = 25, 𝜎] = 10, 𝜎[ = 10. 

 
Figure 5. Log histogram of horizontal derivatives. 

        
(a) Thermal and visible-light image pair.  

   
(b) Bilateral filtering upsampling using Equation (3). 

   
(c) Trilateral filtering using Equation (6). 

   
 (d) Local-trilateral filtering using Equation (8). 

 
Figure 6. Other example comparing different upsampling methods. 
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