
IMPLEMENTATION STRATEGIES OF THE SEISMIC FULL WAVEFORM INVERSION

Reynaldo F. Noriega †, Ana B. Ramirez †, Sergio A. Abreo†, and Gonzalo R. Arce‡.

†Industrial University of Santander, Bucaramanga, Colombia.
‡ University of Delaware, Newark, DE.

ABSTRACT

Full waveform inversion (FWI) is a state-of-the-art method

that has been used to estimate parameters of the Earth’s sub-

surface. One of the main drawbacks of the FWI method is

its high computational complexity in terms of both time and

memory. This occurs because the inversion method is based

on the computation of a gradient function that requires the

forward (and backward) wave propagation of sources (and

residuals) through the subsurface medium. Nowdays, seismic

surveys are large scale problems and therefore the computa-

tion and storage in RAM memory of both wavefields is not

feasible. Therefore, different strategies for the FWI method

should be used. In this paper, we use two different implemen-

tation strategies that avoid allocating the full wavefields in

RAM memory. Instead, the wavefields are re-computed while

at the same time the gradient function is obtained. The re-

computation of the wavefields remains possible from a prac-

tical point of view since we use parallel architectures (GPUs).

We show that the estimated velocity models obtained with

all the strategies are similar. We also show that the RAM

consumption decreases up to 80% for the proposed strategies

in comparison with the strategy that requires storing the full

wavefields.

Index Terms— Seismic full waveform inversion, CPML,

GPUs, FDTD.

1. INTRODUCTION

Full Waveform Inversion (FWI) is a state-of-the-art method

used to estimate parameters of the Earth’s subsurface from

seismic data acquired at the surface [1, 2]. Currently, this

inversion method has gain a lot of attention due to its capa-

bility of finding velocity models of high resolution. The FWI

method consists on finding the model that minimizes the ℓ2-

error norm between the observed and modeled seismic traces.

The modeled data is generated by using an initial guess of the

velocity model and a wave equation model. A good starting

model is required to find an adequate estimate, otherwise the

solution is a local minima. Additionally, a strategy to avoid

artificial reflections due to non-natural boundaries should be

considered when using a wave equation model. Among the

traditional boundary conditions, the convolutional perfectly

matched layer (CPML) method absorbs adequately the non-

natural reflections in the solution of the wave equation [3].

The FWI method iteratively estimates the velocity model

of the subsurface by using a gradient descent approach. The

computation of the gradient demands a high cost of time and

storage resources because it requires computing the forward

wavefield of the sources and the backward wavefield of the

residuals, through the subsurface medium [4]. In particular,

we exploit the parallelism level of computing the wavefields

using finite differences time domain (FDTD), such that every

spatial point at a single time snapshot can be obtained at once

in a graphics processing unit(GPU) architecture [5]. The par-

allelism level of the FDTD also favors the use of implementa-

tion strategies that do not need to store large amounts of data,

because the wavefields can be re-computed while at the same

time the gradient function is obtained. In this paper, we com-

pare different FWI implementation strategies that manage the

RAM memory consumption and does not increase the com-

putational time considerably. One strategy requires storing

only one wavefield. A different strategy re-computes wave-

fields at each iteration [6], so that much less RAM memory is

required. Clearly, the implementation strategies would need

more execution time than if both wavefields are allocated in

memory.

2. THEORETICAL BACKGROUND

Seismic FWI is a non-linear inversion method that aims at

estimating subsurface properties, such as the velocity model,

from seismic data recorded at the surface. The method es-

timates the set of parameters m that minimizes the ℓ2-norm

of the error between the observed and modeled seismic data.

The inversion method is given by the following optimization

problem [2]

m̂ = argmin
m

Φ(m) = argmin
m

1

2
‖ dobs − dmod(m) ‖

2

2
, (1)

where dobs and dmod(m) are the acquired and modeled seis-

mic data, respectively. The modeled seismic data dmod(m)
is the solution at the surface position of the two-way wave

equation given by

1

m2(x, z)

∂2ρ

∂t2
=
∂2ρ

∂x2
+
∂2ρ

∂z2
+ S(x, z, t), (2)

1567978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

whereS(x, z, t) is the source wavelet that depends on the spa-

tial and temporal variables.

A strategy to find the solution of the problem stated in (1) is

using the gradient descent method, such that an update for the

parameters at iteration k + 1 is given by

mk+1 = mk + α · g
k
, (3)

where mk and g
k

are the velocity model at the kth iteration

and the gradient, respectively. α is the step size that controls

the update of the model. The gradient g
k

uses the forward and

backward propagation wavefields of the source and residual

data, respectively. According to [7], the gradient g
k

can be

obtained using the first order adjoint state method, and it is

given by

gk(x, z) = −
2

m3
k
(x, z)

∑
s

∫ T

0

qs(x, z, T−t)
∂2ps(x, z, t)

∂t2
dt,

(4)
where qs(x, z, T − t) is the backward propagated field in

time when the source is the residual between observed and

modeled data, ps(x, z, t) is the forward propagated field of

the source s, and T is the total wavefield propagation time.

The modeling of the wave propagation using the acoustic

wave equation uses absorbing boundary conditions in order

to eliminate the reflections given by non-natural boundaries.

In order to reduce artificial reflections within the area of inter-

est, we used the convoluted perfectly matched layer (CPML)

method. The modified wave equation that includes CPML at

the non-natural boundaries is given by

1

m2(x, z)

∂2ρ

∂t2
=
∂2ρ

∂x2
+
∂2ρ

∂z2
+S(x, z, t)+

∂2ψ(x, z)

∂t2
+ξ(x, z),

(5)

where ψ(x, z), ξ(x, z) are auxiliar fields such that the wave-

field at the boundaries decays. A complete description of how

to select ψ(x, z) and ξ(x, z) can be found in [8].

2.1. Full waveform inversion algorithm

The traditional implementation for the FWI algorithm is given

in form of a pseudo-code in Algorithm 1. Note that in line 22

of Algorithm 1, that both volumes should be stored in RAM

memory, the forward and backward propagated wavefields.

Furthermore, the execution time of the FWI depends on the

number of sources, total propagation time, and time and spa-

tial discretization.

3. FWI STRATEGIES AND COMPUTATIONAL

PERFORMANCE ON GPUS

The principal advantage of using graphical processing units

(GPUs) for the FWI implementation is that we can compute

every snapshot of the wave propagation in parallel. Thus, at

the same time, the pressure wavefield at all spatial positions

Algorithm 1 Full Waveform Inversion

1: FWI(m,Tobs, S, inf, α) ⊲ FWI inputs

2: m ⊲ Starting velocity model

3: Tobs ⊲ Acquired data

4: S ⊲ Wavelet source

5: inf ⊲ Location of each shot

6: α ⊲ Alpha value

7: for i← 1, iG do ⊲ iG, Number of FWI iterations

8: acum← 0
9: g(x, z) = 0

10: for j ← 1, Ns do ⊲ Ns, Number of sources

11: for t← 1, Nt do ⊲ Nt, Number of time steps

12: 1
m(x,z)2

∂2ρ

∂t2
= β + ∂2ρ

∂x2 + ∂2ρ

∂z2
+ S(sj, t)

13: Mod(x, t)← ρ(x, 0, t)
14: end for

15: Obsdev ← Obsj,host ⊲ Observed data from host to device

16: Residual(x, t)← Tmod(x, t) − Tobsdev(x, t)
17: norm← ‖Residual(x, t)‖22 ⊲ (L2 Norm)2

18: acum← 1
2
norm+ acum

19: for t← 1, Nt do

20: 1
m(x,z)2

∂2λ
∂t2

= β+ ∂2λ
∂x2 + ∂2λ

∂z2
+Residual(x,Nt− t)

21: end for ⊲ Gradient

22: g(x, z) = g(x, z)− 2
(mk(x,z))3

∫ T

0
λ(x, z, T−t)∂

2ρ(x,z,t)
∂t2

dt

23: end for

24: φ(i)← acum

25: m(x, z)← m(x, z) + α · g(x, z) ⊲ Model update

26: end for

27: mend ← m(x, z) ⊲ Final velocity model from device to host.

28: return φ,mend

of one snapshot are computed. However, as mentioned be-

fore, the implementation of a FWI algorithm has an expen-

sive RAM consumption, because to the backward and forward

wavefield volumes need to be stored. Those volumes require

up to between 80% and 90% of the memory used by the im-

plementation. For that reason, the use of GPU architectures

has been limited in real problems and a feasible solution is

to find different implementation strategies. In the following,

three different implementation strategies are compared.

3.1. Strategy I: Dual volume allocation

The first strategy is the common FWI implementation, which

allocates GPU RAM for all shot-gathers, velocity models,

gradient and the backward and forward propagation volumes

[4]. A GPU function performs the propagation and stores the

backward and forward wavefields to then compute the gra-

dient matrix by first making a dot product of the wavefields,

and then summing the resulting volume in the time direction.

The main steps of the first implementation strategy is given in

Algorithm 2.

3.2. Strategy II: Single volume allocation

The second FWI implementation strategy consist on allocat-

ing GPU RAM for all matrices, shot-gathers, velocity model

and a single propagation volume. A GPU kernel function

computes the forward wavefield and stores it. A second

1568

Algorithm 2 : Dual volume allocation

1: for t← 1, Nt do ⊲ Nt, Number of time steps

2: 1
m(x,z)2

∂2ρ

∂t2
= β + ∂2ρ

∂x2
+ ∂2ρ

∂z2
+ S(sj, t)

3: end for

4: for t← 1, Nt do

5: 1
m(x,z)2

∂2λ
∂t2

= β + ∂2λ
∂x2

+ ∂2λ
∂z2

+Residual(x,Nt− t)

6: end for

7: g(x, z) = g(x, z)− 2
(mk(x,z))3

∫ T
0 λ(x, z, T − t)

∂2ρ(x,z,t)

∂t2
dt ⊲

Gradient

GPU kernel computes the backward propagated wavefield

and overwrites the allocated memory with the dot product

between the computed snapshot of the backward wavefield

and the stored forward wavefield. Finally, a third GPU kernel

adds all the snapshots in order to obtain the gradient matrix.

The main steps of the second implementation strategy is given

in Algorithm 3.

3.3. Strategy III: No volume allocation

The third FWI implementation strategy requires no GPU

RAM allocation for the wavefields volumes. Instead, we first

compute the forward propagation in order to obtain modeled

data and compute the residual traces. Then, backward propa-

gation is re-computed using only the two snapshots ρ(x, z, 1)
and ρ(x, z, 2), together with the CPML boundaries for each

time step. A GPU kernel re-computes the backward prop-

agation from the stored data while computing the forward

propagation wavefield once again. The same GPU kernels

computes gradient matrix by multiplying the forward snap-

shot and the reconstructed backward snapshot, and it stores

the sum of all resulting matrices. The main steps of the third

implementation strategy is given in Algorithm 4.

4. NUMERICAL EXPERIMENTS AND RESULTS

The three strategies were evaluated using a finite-difference

time domain approximation of 8th-order in space, and 2nd-

order in time. The true velocity model was used to generate

the observed data, and a initial velocity model guess is ob-

tained by applying a low-pass filter to the true velocity model

20 times horizontally. The parameters of the synthetic model

are Nx = 497, Nz = 121, ∆x = ∆z = 0.025 Km, 457 re-

ceivers, 20 grid points of CPML boundaries, ∆t = 1 ms and

the total propagation time was T = 3.5 s. A ricker wavelet

was used as source with frequencies of 5, 10 and 20 Hz, and

constant step in the descent direction of α = 9.0. The esti-

mated velocity models for all strategies are depicted in Fig. 1.

We also present in Table 1 a comparison between the

theoretical proposed GPU-RAM consumption given by equa-

tions (6), (7), and (8) for strategies I, II and III, respectively;

with the measured GPU-RAM. In equations (6), (7), and (8),

RD is the RAM used by the GPU for launching the process,

Distance (km)
0 2 4 6 8 10 12D

ep
th

 (
km

) 0

2

Distance (km)
0 2 4 6 8 10 12D

ep
th

 (
km

) 0

2

Distance (km)
0 2 4 6 8 10 12

D
ep

th
 (

km
) 0

2

Fig. 1. Final velocity model obtained with: Top: strategy I.

Middle: strategy II. Bottom: strategy III.

Algorithm 3 : Single volume allocation

1: for t← 1, Nt do ⊲ Nt, Number of time steps

2: 1
m(x,z)2

∂2ρ

∂t2
= ∂2ρ

∂x2
+ ∂2ρ

∂z2
+ S(sj, t)

3: end for

4: for t← 1, Nt do

5: 1
m(x,z)2

∂2λ
∂t2

= β + ∂2λ
∂x2

+ ∂2λ
∂z2

+Residual(x,Nt − t)

6:
∂2ρ(x,z,Nt−t)

∂t2
= β + ∂2ρ(x,z,Nt−t)

∂t2
∗ λ(x, z,Nt− t)

7: end for

8: g(x, z) = g(x, z)− 2
(mk(x,z))3

∫ T
0

∂2ρ(x,z,t)
∂t2

dt ⊲ Gradient

and it is constant for all the strategies; σ = 4 is the size of

a float variable, and St is the size of the spatial stencil used

for the finite-differences approximation. Figure 2 shows the

GPU-RAM consumption of strategy I, II and III, relative to

strategy I, as a function of the number of shots. Note that

as the number of shots increases, the reduction in memory

consumption obtained with strategy II and III decreases. This

Algorithm 4 : No volume allocation

1: for t← 1, Nt do ⊲ Nt, Number of time steps

2: 1
m(x,z)2

∂2ρ

∂t2
= β + ∂2ρ

∂x2
+ ∂2ρ

∂z2
+ S(sj, t)

3: end for

4: for t← Nt, 1 do ⊲ Nt, Number of time steps

5: 1
m(x,z)2

∂2λ
∂t2

= β + ∂2λ
∂x2

+ ∂2λ
∂z2

+ lambda(sj, t)

6: end for

7: save← ρ(x, z, 1) and ρ(x, z, 2) ⊲ Initial conditions for next

propagation

8: for t← 1, Nt do

9: 1
m(x,z)2

∂2λ
∂t2

= ∂2λ
∂x2

+ ∂2λ
∂z2
−Residual(x, t)

10: 1
m(x,z)2

∂2ρ

∂t2
= β + ∂2ρ

∂x2
+ ∂2ρ

∂z2
+ S(sj, t)

11: g(x, z) = g(x, z)− 2
(mk(bfx,z))3

∂2ρ(x,z,t)

∂t2
λ(x, z, t) ⊲ Gradient

12: end for

1569

occurs since the memory required to allocate the backward

and forward wavefields is less significant than the memory

required to allocate the observed data(using several number

of sources).

Finally, in order to guarantee that the estimated velocity

models are the same for all the strategies, we compute the

quadratic error between the true and the estimated model for

the three strategies for 1, 51 and 171 shots. This is shown

in Table 2. Note that all strategies have the same error norm

when 1 shot is used. However, when more than one shot

are used, the error norm increases in strategies II and III.

This occurs because performing the operations in different

order inside the GPU gives different result due to rounding

approximations.

5. CONCLUSIONS

In this work, we compare three different implementation

strategies for the FWI algorithm, which can be used to de-

crease the RAM consumption on CUDA heterogeneous GPU

architectures. A small difference in the resulting velocity

model is found in the different strategies, which is generated

due to the different order of the operators used in the imple-

mentations. The storage consumption is reduced significantly

for small number of shots, which allows the use of the pro-

posed strategies for the estimation of velocity model is real

seismic applications.

6. ACKNOWLEDGMENTS

This work is partially supported by Colombian Oil Company

ECOPETROL and COLCIENCIAS as part of the research

project grant No. 0266-2013.

RAM SI (MiB) = RD + σ ∗ (20 ∗Nx ∗Nz

+3 ∗Nx ∗Nt+ 2 ∗Nx ∗Nz ∗Nt+Nx ∗Nt ∗Ns

+2 ∗Nx+ 2 ∗Nz)/(220).

(6)

RAM SII(MiB) = RD + σ ∗ (20 ∗Nx ∗Nz

+3 ∗Nx ∗Nt+Nx ∗Nz ∗Nt+Nx ∗Nt ∗Ns

+2 ∗Nx+ 2 ∗Nz)/(220).

(7)

RAM SIII(MiB) = RD + σ ∗ (20 ∗Nx ∗Nz

+4 ∗Nx ∗Nt+Nx ∗Nt ∗Ns+ 2 ∗Nx+ 2 ∗Nz

+2 ∗ St ∗Nz ∗Nt+ 2 ∗ St ∗Nx ∗Nt)/(220).

(8)

No. of shots Strategy Measur.[MiB] Theor.[MiB]

1

I 1724 1723. 85

II 921 920.93

III 362 361.55

51

I 2056 2055.63

II 1253 1252.72

III 693 693.34

Table 1. Measured vs. theoretical RAM consumption for all

strategies for different number of shots.

Strat. / No.sources 1 51 171

I 30903.53 28260.37 26536.13

II 30903.53 28261.31 26536.13

III 30903.53 28264.20 26544.02

Table 2. ℓ2-error norm between true and estimated model for

all strategies for different number of sources.

Number of sources
0 100 200 300 400 500

%

20

30

40

50

60

70

80

90

100

Strategy I
Strategy II
Strategy III

Fig. 2. Percentage of RAM consumption for strategies I, II

and III, relative to strategy I.

7. REFERENCES

[1] A. Tarantola, Inverse Problem Theory and Methods for

Model Parameter Estimation, Addison-Wesley, 1989.

[2] J. Virieux and S. Operto, “An overview of full-waveform

inversion in exploration geophysics,” Geophysics, vol.

74, no. 3, pp. no. 6, 2009.

[3] D. Pasalic, Convolutional perfectly matched layer

for isotropic and anisotropic acoustic wave equations,

Addison-Wesley, 2010.

[4] S.-A. Abreo, A. Ramirez, O. Reyes, D.-L. Abreo, and

H. Gonzalez, “Practical implementation of acoustic

full waveform inversion on graphical processing units,”

CTYF, vol. 6, no. 2, pp. 5–16, 2015.

1570

[5] X.-D. Tang, H. Zhang, and Hong Liu, “Frequency-

space domain acoustic modeling based on an average-

derivative and gpu implementation,” Chinese Journal of

Geophysics, vol. 58, 2015.

[6] Pengliang Yang, Jinghuai Gao, and OBaoli Wang, “A

graphics processing unit implementationof time-domain

full-waveform inversion,” Geophysics, vol. 80, no. 3, pp.

4–5, 2015.

[7] R Plessix., “A review of the adjoint-state method for com-

puting the gradient of a functional with geophysical ap-

plications,” Geophysics, vol. 167, pp. 495–503, 2006.

[8] F. Collino and C. Tsogka, Application of the perfectly

matched absorbing layer model to the linear elasto-

dynamic problem in anisotropic heterogeneous media,

Addison-Wesley, 2004.

1571

