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ABSTRACT

In this paper, we propose an effective complexity control ap-
proach for video conferencing scenarios on HEVC platform.
A complexity control formulation is established to determine
the number of depth-constrained largest coding units (LCUs)
according to the target complexity. By limiting the maxi-
mum depths of different LCUs to different levels, the encod-
ing complexity can be controlled with high accuracy. Differ-
ent from other approaches, both the objective and perceptual-
driven video quality are kindly preserved through taking both
the objective and subjective weight maps into consideration
when controlling the complexity. The experimental result-
s demonstrate that our approach outperforms the state-of-the
art approach with higher control accuracy. Also, despite of
complexity reduction, our approach keeps the objective and
perceptual-driven quality well.

Index Terms— HEVC, Encoding complexity control,
Video conferencing

1. INTRODUCTION

Video conferencing is a live and visual communication
method, which aims to provide high-resolution images and
high-fidelity audio signals for people from different places.
The advent of customer services like Microsoft’s Skype,
Apple’s Facetime and Cisco’s Meeting server, makes video
conferencing more and more ubiquitous in people’s daily
life. However, the encoding of high-resolution videos, e.g.,
4K and 8K, is such a time-consuming job that the low-delay
transmission need of video conferencing cannot be satisfied.
Thus, it is quite necessary to control the encoding complexity
of video conferencing.

Some works[1, 2, 3, 4, 5, 6, 7] have been done to control
the encoding complexity of HEVC. Specifically, Correaet.al
[1] designed a method controlling the encoding complexi-
ty of HEVC in Group of Pictures (GOP) level, through ad-
justing the operational configurations during encoding time.
Denget.al [2] proposed a HEVC complexity control method
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in largest coding unit (LCU) level. Relying on the concept
of subjective weights, they reduce the coding depths of L-
CUs with smaller weights to achieve control by solving a
distortion-complexity formulation. Recently, based on a set
of early termination conditions, Moreno et al. [3] proposeda
complexity control approach for HEVC. However, to our best
knowledge, there is no work done on complexity control for
video conferencing. Actually, by leveraging the property of
video conferencing, further improvements in control accura-
cy and video quality can be achieved as shown in this paper.

The quardtree-based coding tree unit (CTU) partitioning
scheme [8] is an advance in HEVC. However, most time-
consuming components are included in it. In this scheme,
each frame is divided into equal-sized blocks called LCUs.
The size of LCU is designated by the encoder, default as
64 × 64. Another important parameter set by the encoder is
the allowed maximum LCU splitting depth, or the maximum
depth. It decides the size of the smallest coding unit (SCU),
with the default depth as 3, indicating that64 × 64 LCU can
be split into8× 8 SCUs. Before the64× 64 LCU gets its op-
timal depth, the rate-distortion-optimization (RDO) process
should be done 85 (= 1+ 4+ 42 + 43) times. Obviously, the
larger the maximum depth is, the more encoding time is con-
sumed. However, the optimal depth is not always equal to the
maximum depth, which is actually highly content-dependent.
For example, as we can see in Fig.1, the texture of the wall
is quite homogenous, and the optimal depths of most LCUs
in this region are 0, despite of their maximum depths being 3.
Thus, the basic complexity reduction thought in our approach
is to predict the optimal depths of LCUs and then reduce their
maximum depths based on the predicted optimal depths. As
long as the prediction is accurate, there exists no bit-ratein-
crease or PSNR loss. The aim of our approach is to control the
encoding complexity of HEVC, with the controlling mecha-
nism based on the following observation: when the maximum
depth is reduced to a fixed value, the encoding complexity
takes a nearly same proportion despite of sequence content.
Fig.2 shows the complexity proportion occupied by different
maximum depths. Specifically, when maximum depth is re-
duced from 3 to 2, 1, and 0, the complexity proportion is de-
creased from 1.00 to 0.65, 0.38 and 0.20. We have tested
sequences with different resolutions and find this relationship
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Fig. 1. The picture is the 12-th frame ofFourpeople which
is video conferencing. The green lines indicate the optimal
LCU partition results. The number in the red/blue box is the
optimal depth for that LCU.

Fig. 2. Encoding complexity proportion occupied by different
maximum depths.

applies with only a little difference.
In this paper, we propose a complexity control approach

for video conferencing encoding using HEVC. The complexi-
ty is controlled by a proposed complexity control formulation.
The basic idea is restricting the maximum depths of LCUs
with low importance. The advantage of our approach is that
in the process of complexity control, both the objective and
subjective weight maps are considered, and thus the objective
and subjective video quality can be preserved simultaneously.

2. PROPOSED METHOD

The basis of nearly all complexity control approaches is com-
plexity reduction [9, 10, 11, 12]. In our complexity control
approach, the core of complexity reduction is to reduce the
maximum depths of LCUs with low importance. The impor-
tance of LCUs is measured from two aspects: objective and
subjective.

2.1. Objective weight map

The objective weight map is used to preserve objective qual-
ity and coding efficiency. Here, we propose to use the bit-
allocation map as the objective weight map, because we find
that the bit-allocation map can tally with the optimal depth

Table 1. Average results ofP(D|B) of Fourpeople
P(D|B) D=0 D=1 D=2 D=3
B < 20 99.89 0.11 0.00 0.00

20 ≤ B < 40 99.43 0.57 0.00 0.00
40 ≤ B < 60 98.61 1.36 0.03 0.00
60 ≤ B < 80 61.57 23.76 10.75 3.92
80 ≤ B < 100 8.80 17.30 29.88 44.02
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Fig. 3. (a) is the objective weight map of 12-th frame of
Fourpeople, i.e., bit allocation map of its previous frame. (b)
shows the relationship between optimal depth and bit alloca-
tion. The horizontal axis in (b) is the ascending order of bits
allocated to LCUs.

allocation well. As we can see in Figure 3-(a), the LCUs
allocated with more bits tend to have larger optimal depths.
Figure 3-(b) describe the relationship between bit allocation
and optimal depth for 3-(a). Here, one significant observation
is that LCUs with smaller bits have great chance being not s-
plit, i.e., the optimal depth is 0. Letbj be the bits allocated to
thej-th LCU, we can get the normalised objective weight of
thej-th LCU, Wo(j) =

bj
bmax

, wherebmax is the largest bits
among all LCUs in a frame.

In order to accurately analyse the dependency between the
optimal depth and bit allocation,P(D|B) is adopted, where
D denotes the event that the optimal depth is 0, 1, 2 or 3, and
B is the bit ascending order. For example,P(D = 0|B < 20)
indicates the probability of event that the optimal depth ofL-
CU is 0 when its allocated bit is ordered less than 20%. Table
1 shows the average results ofP(D|B) of Fourpeople. We
can see that when the bit order is less than 20%, the proba-
bility of the event that LCUs do not split (i.e.,D=0) is pretty
high, i.e., 99.89. Thus, by setting the maximum depths of
these LCUs to be 0, the encoding complexity can be saved
with little quality and coding efficiency loss. Finally, since
the bit allocation information of the current frame can only
be obtained after encoding, we use the bit allocation map of
its previous frame as the map for the current frame. This as-
sumption is reasonable because there are few scene changes
in video conferencing, and the experimental results also veri-
fy the effectiveness.

2.2. Subjective weight map

The subjective weight maps aim to protect the perceptual-
driven video quality. Here, we adopted the method in [13]
to generate the subjective weight maps, because it is very
fast. [13] can predict the saliency value of each pixel in
frames. Let{pq}

Q
q=1

denote the saliency values of allQ
pixels in j-th LCU, then the subjective weight ofj-th LCU
is Ws(j) =

∑Q

q=1
pq/Q. The subjective weight maps can

highlight the regions attracting people’s attention most when
they are watching videos. Intuitively, we hope to preserve the
video quality of regions with large subjective weights.

However, the subjective weight has lower relevance with
optimal depth. For example, many LCUs have large subjec-
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Fig. 4. Illustration of complexity control algorithms for dif-
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Fig. 5. Relationship between frames and sum encoding time.

tive weights but their optimal depths are pretty small. Relying
only on subjective weights to determine the maximum depth-
s of LCUs may incur objective quality and coding efficiency
loss. By comparison, the objective weights can protect the ob-
jective quality, but may impair the perceived quality. Thus, in
order to keep a balance between the objective and perceived
quality, we take both the objective and subjective weights into
consideration when deciding the maximum depths of LCUs in
Section 2.3.

2.3. Complexity control formulation

In our approach, complexity is controlled by adjusting the
number of LCUs with different constrained maximum depth-
s. Based on proportions in Fig. 2, the complexity control
formulation is established as

min
{Ni}3

i=0

∣

∣

∣

∣

∣

1

J

3
∑

i=0

PiNi − Tc

∣

∣

∣

∣

∣

s.t.
3

∑

i=0

Ni=J, (1)

whereNi is the number of LCUs with maximum depth being
i, andJ is the total number of LCUs in each frame.Pi is the
complexity proportion occupied by maximum depth beingi.
Tc is the target complexity. We divideTc into three levels:
high (Tc is from 1.00 to 0.65), medium (from 0.65 to 0.45),
and low (less than 0.45). Based on theTc level, (1) is solved
using different ways.

High. The target complexity is so high that there is no
need to reduce the maximum depths to 0 and 1.N0 andN1 in
(1) are set to 0, and then (1) can be turned to

min
{N2,N3}

∣

∣

∣

∣

∣
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J

3
∑

i=2

PiNi − Tc

∣

∣
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∣

s.t.
3

∑

i=2

Ni=J. (2)

Medium. The maximum depths of LCUs can be select-
ed from{0,1,2,3}. However, there are some constraints on
the selections. The LCUs with bits ordered less than 20%

should select 0, and LCUs with bits ordered from 80% to
100% should select 3 as their maximum depths. The other
LCUs can select between 1 and 2. As we have explained in
Section 2.1, setting the maximum depths of LCUs whose bit-
s order is less than 20% to 0 has little effect on the coding
efficiency and objective quality:

min
{N1,N2}

∣

∣
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∣
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2
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∣
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s.t.
2

∑

i=1

Ni=J−N0−N3,

(3)
whereN0 andN3 are bothJ × 20%.

Low. The target complexity is so low that most LCUs can
only select their maximum depths between 0 and 1.N2 is set
to 0. However, in order to guarantee the video quality, like the
Medium, the LCUs with bits ordered from 80% to 100% are
given optimal depths as 3. Then, (1) can be turned to

min
{N0,N1}

∣
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1

J −N3

1
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PiNi − Tc

∣

∣
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∣

∣

s.t.
1

∑

i=0

Ni=J −N3.

(4)
For each complexity level, following the above formu-

lations, it is easy to calculate and obtain{Ni}
3

i=0
. Then,

in each frame, after{Ni}
3

i=0
is obtained, the j-th LCU can

get its maximum depth based on its objective weightWo(j)
and subjective weightWs(j). Before that, we need to sort
the objective and subjective weights of all LCUs in a frame.
Let {λp}

2

p=0
be the thresholds of LCU numbers with limited

depths,λp =
∑p

i=0
Ni. Then, the thresholds of objective and

subjective weights corresponding toλp are denoted byO(λp)
andS(λp), respectively. Table 2 presents the overall algorith-
m in determining the maximum depthDj for thej-th LCU in
a frame.

The target complexity for current frame can be updated
based on the encoding time of its previous frames, to further
increase the control accuracy. Here, the target complexityof
the firstM frames is set to 1.00, and their encoding time can
be used to predict the total encoding time of the sequence:

Ef =
F

M
EM , (5)

whereEM is the encoding time of the firstM frames andF
is the frame number of sequence. As can be seen from Fig. 5,
the encoding time is directly proportional to the frame num-
ber. Thus, it is reasonable to predict total encoding time using
(5). The target encoding time per frametframe is obtained

tframe =
Ef

F
× Tc. (6)

From the (M+1)-th frame on, the average encoding time per
frame is denoted bytactual. Tc is updated as follows: if
tactual < αtframe, Tc of current frame is updated toTc + a;
if tactual > βtframe, Tc is updated toTc − b. Here, we em-
pirically setα andβ to 0.95 and 1.05, seta andb to 0.05, and
M to 48, i.e., the first 12 GOPs.
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Table 2. The Overall Algorithm of Our Approach

– Input: The target complexityTc .

– Output: The maximum depthDj for j-th LCU in each frame.

• InitializeF to the number of frames to be encoded.

• InitializeJ to the number of LCUs in a frame.

• InitializeM to the number of frames without complexity control.

• For k = 1, k ≤ M,k++
Calculatetframe using (6).
End

• For k = M + 1, k < F, k++

1 Calculate{Ni}
3
i=0 by (2), (3), and (4), based on the target com-

plexity level. setλp =
∑p

i=0
Ni .

2 For j = 0, j < J, j++

CalculateWo(j) andWs(j) for the j-th LCU.
If Wo(j) < O(λ0), Dj=0

Else If Wo(j) < O(λ1)&&Ws(j) < S(λ1),
Dj=1

Else If Wo(j) > O(λ2), Dj =3
Else Dj=2

End
3 UpdateTc.

End

Table 3. Test Sequences
Sequences Resolution Frames

Johnny 1280 × 720 600 @60fps
KristenAndSara 1280 × 720 600 @60fps

Fourpeople 1280 × 720 600 @60fps
Vidyo 1 1280 × 720 600 @60fps
Vidyo 3 1280 × 720 600 @60fps
Vidyo 4 1280 × 720 600 @60fps

Table 4. Complexity control performance comparison be-
tween our and comparing approaches

Tc=60% Our approach Comparing [3]
Rc(%) BD-PSNR BD-rate Rc(%) BD-PSNR BD-rate(%)

Johnny 58.80 0.00 dB 0.00 65.18 0.00 dB 0.10
KristenAndSara 61.41 -0.01 dB 0.01 64.54 -0.03dB 0.11

Fourpeople 60.35 -0.01 dB 0.46 67.78 -0.03 dB 0.66
Vidyo1 57.39 -0.02 dB 0.26 67.24 -0.02 dB 0.24
Vidyo3 58.12 -0.06 dB 1.02 66.72 -0.07 dB 0.89
Vidyo4 62.21 -0.02 dB 0.30 63.32 -0.04 dB 0.87
Average 59.71 -0.02 dB 0.34 65.80 -0.03 dB 0.48

Our approach Comparing [3]
Tc=40% Rc(%) BD-PSNR BD-rate Rc(%) BD-PSNR BD-rate(%)

Johnny 42.33 -0.06 dB 2.32 35.22 -0.21 dB 5.72
KristenAndSara 40.10 -0.07 dB 3.25 33.57 -0.53dB 9.21

Fourpeople 41.23 -0.24 dB 6.50 42.83 -0.35 dB 10.78
Vidyo1 37.36 -0.06 dB 1.93 27.09 -0.23 dB 9.89
Vidyo3 38.37 -0.11 dB 3.67 31.39 -0.28 dB 10.32
Vidyo4 40.16 -0.11 dB 3.88 33.89 -0.21 dB 5.87
Average 39.92 -0.11 dB 3.59 34.00 -0.30 dB 8.63

Table 5. ∆ P-PSNR results of our approach
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Tc=80 0.00 0.00 0.01 0.01 0.02 0.01
Tc=60 0.00 0.02 0.05 0.06 0.06 0.04
Tc=40 0.02 0.06 0.13 0.14 0.13 0.10

(a) (b)

Fig. 6. (a) shows the running complexity across frames with
80%, 60%, and 40% targets ofFourpeople. (b) shows the
corresponding∆ PSNR across frames. Here,∆ PSNR refers
to the PSNR loss caused by complexity reduction.

(a) Original picture (b) Picture with 80% target

(c) Picture with 60% target (d) Picture with 40% target

Fig. 7. The 85-th frames ofFourpeople with different com-
plexity reductions.

3. EXPERIMENTAL RESULTS

Experiments were done on HM 16.0 and the test videos are
video conferencing sequences selected from HEVC standard
test sequences, shown in Table 3. The test condition was cho-
sen according to [14], and lowdelayP main configuration is
used, because video conferencing requires low latency.

Table 4 shows the results of control accuracy, BD-rate and
BD-PSNR for 60% and 40% target complexities of our and
comparing approach [3].Rc is the actual running complexi-
ty. We can see that our approach outperforms [3] in making
Rc much closer to the target complexityTc with small bias.
Meanwhile, our approach keeps the objective quality well.
For Johnny @60% there is even no PSNR loss. Fig.6-(a) plot
the running complexity change with frames for different tar-
gets and we can see that the controlling process is basically
steady with a little fluctuation. Fig.6-(b) shows the PSNR loss
across frames and it is obvious that for 80% and 60% targets,
there is little PSNR loss. Interestingly, many frames have neg-
ative PSNR loss indicating that we improve the PSNR while
reducing the complexity.

We calculate perceptual driven quality P-PSNR following
[15]. Table 5 shows the perceptual driven quality loss∆ P-
PSNR caused by complexity reduction in our approach. In
this figure, the loss is negligible until 40%. Fig.7 show the
same picture with different complexity reductions, and we
cannot feel obvious quality distortion among them, especially
among80%, 60% and original picture.

4. CONCLUSION
In this paper, we propose an HEVC complexity control ap-
proach for video conferencing encoding. We integrate the
video quality protection problem within the control process.
Specifically, we propose two weight maps to keep the objec-
tive and perceptual-driven video quality and these maps are
fully incorporated in the controlling algorithm. Thus, ourap-
proach can simultaneously ensure the control accuracy and
preserve video quality, including objective and perceptual-
driven. The experimental results verifies the effectiveness of
our approach comparing to other state-of-the-art approach.
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