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ABSTRACT

Medical applications like Computed Tomography (CT) or Magnetic

Resonance Tomography (MRT) often require an efficient scalable

representation of their huge output volumes in the further processing

chain of medical routine. A downscaled version of such a signal can

be obtained by using image and video coders based on wavelet trans-

forms. The visual quality of the resulting lowpass band, which shall

be used as a representative, can be improved by applying motion

compensation methods during the transform. This paper presents a

new approach of using the distorted edge lengths of a mesh-based

compensated grid instead of the approximated intensity values of

the underlying frame to perform a motion compensation. We will

show that an edge adaptive graph-based compensation and its usage

for compensated wavelet lifting improves the visual quality of the

lowpass band by approximately 2.5 dB compared to the traditional

mesh-based compensation, while the additional filesize required for

coding the motion information doesn’t change.

Index Terms— Discrete Wavelet Transforms, Motion Compen-

sation, Scalability, Signal Processing on Graphs, Computed Tomog-

raphy

1. INTRODUCTION

Accessing, transmitting or storing medical data volumes can be a

crucial task because the filesize often gets very large. Therefore

downscaled versions of the original signal, e.g. in telemedical ap-

plications, can be very useful for tasks like browsing and fast pre-

viewing.

Subband coding provides an appropriate way to achieve scala-

bility features without additional overhead [1]. Using the wavelet

transform, the signal is decomposed into a lowpass (LP) and a high-

pass (HP) band with the energy concentrated in the LP band. Blur

and ghosting artifacts in the LP band caused by the motion of the

CT or MRT volumes can be compensated by incorporating adequate

motion compensation (MC) methods directly into the wavelet trans-

form. This adaption to the signal leads to a higher visual quality of

the LP band and a better energy compaction in fewer transform coef-

ficients. While the first property is very important, when the LP band

shall be used in medical applications as a downscaled representative,

the second property results in a higher coding efficiency [2].

In this paper we will present a novel approach to use common

motion vector fields of a traditional mesh-based MC in a much more

efficient way by exploiting the geometric structure of the underlying

grid. This way we can guarantee that the number of bits required

for encoding the motion information stays the same, while the visual

quality of the LP band increases.
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Fig. 1: Compensated Haar lifting structure in temporal direction

(MCTF).

Section 2 presents a brief overview of the compensated wavelet

lifting, followed by a detailed description of the new edge adaptive

graph-based approach for motion compensation in Section 3. Simu-

lation results are shown in Section 4 followed by a short conclusion

in Section 5.

2. COMPENSATED WAVELET LIFTING

By factorising the filter representation of the wavelet transform, it is

possible to incorporate arbitrary compensation methods directly into

the lifting structure [3]. Fig. 1 shows the lifting structure of the Haar

wavelet and how it can be extended by a compensation method. The

decomposition of the signal occurs in temporal direction, which is

known as Motion Compensated Temporal Filtering (MCTF) [4]. As

Fig. 1 shows, the wavelet lifting consists of two steps, the prediction

and the update step. The HP coefficients HPt are computed in the

prediction step according to

HPt = f2t − ⌊W2t−1→2t(f2t−1)⌋. (1)

Instead of a simple subtraction of the reference frame f2t−1 from

the current frame f2t, a predictor, denoted by the warping opera-

tor W2t−1→2t, is used. This process is described by MC in Fig. 1.

To calculate the LP coefficients, the MC has to be inverted. This

happens in the update step and is denoted by MC−1. To achieve

an equivalent wavelet transform, the index of W has to be reversed

when calculating the LP coefficients

LPt = f2t−1 + ⌊
1

2
W2t→2t−1(HPt)⌋. (2)

To avoid rounding errors, floor operators are applied in the transform

[5]. Considering medical data, the reconstruction of the original sig-

nal without any loss is a very important aspect.
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Fig. 2: After the regular grid gets deformed by using the correspond-

ing motion vectors, the subpixel positions have to be calculated. A

traditional mesh-based MC uses the interpolated values of f2t−1 at

the subpixel positions, while the proposed method exploits the vary-

ing edge lengths of the compensated grid.

3. EDGE ADAPTIVE GRAPH-BASED MOTION

COMPENSATION

To reconstruct the original signal at the decoder side, it is necessary

to encode the corresponding LP and HP bands as well as the motion

information used for the MC and MC−1. In traditional compensation

methods, like block-based or mesh-based approaches [6], [7], the

motion is stored in form of motion vector fields.

The novelty of this paper is to exploit the motion vector fields of

a mesh-based motion estimation to get the displacements of a com-

pensated grid and to use these displacements instead of the inten-

sity values of the underlying frame for the motion compensation.

Thereby the number of bits to code the motion information stays the

same, while the visual quality of the LP band will increase by incor-

porating the geometric structure of the data.

Considering a 2-D mesh-based compensation which is calcu-

lated by putting a quadrilateral mesh of arbitrary grid size over frame

f2t−1 and deformed regarding frame f2t, every motion vector of ev-

ery single grid point (GP) is stored in the corresponding motion vec-

tor field. Then the missing positions of the pixels laying between the

compensated GPs have to be calculated. An example for this process

of deforming and upsampling a grid can be seen in Fig. 2. Due to

the deforming process, the links between the GPs are changing their

length compared to the regular grid.

3.1. Graph-Based Motion Compensation

A smart way to easily incorporate the varying edge lengths into the

motion compensation is the graph-based wavelet lifting. As intro-

duced in [8], it is possible to perform a lifting-based wavelet trans-

form on arbitrary graphs G(V, E), where V is the set of nodes, in-

dexed as 1, 2, 3, ..., N and E is the set of links e between the nodes.

Every link is defined by a triplet (i, j, wij), where i and j are the

start and end nodes respectively and wij is the weight which has a

value 6= 0 if i and j are linked to each other. Also every node has a

f2t−1 f2t

even frameodd frame

Fig. 3: 4-grid neighborhood for one single node of the even frame

connected to the odd frame.

value which is listed in the vector X . For the graph-based wavelet

transform a splitting of the nodes into even and odd subsets is re-

quired. As a consequence the corresponding adjacency matrix A

has to be rearranged accordingly

X =

(

Xeven

Xodd

)

A =

(

F J

K L

)

, (3)

where the submatrices F and L contain edges, which connect nodes

of same parity and the submatrices J and K contain all edges, which

connect nodes of different parity. By applying

H = Xeven − JP ×Xodd

L = Xodd +KU ×H
(4)

we get the vector H , which contains the HP coefficients whereas the

vector L contains the LP coefficients. The matrices JP and KU are

computed from J and K by assigning prediction and update weights

depending on the desired application. Since the matrices F and L are

not used in (4), a perfect splitting of nodes should be intended [9].

Considering images as graph signals as introduced in [10] and

applying the graph-based wavelet transform, every single pixel of a

frame has to be interpreted as a node. Accordingly the intensity val-

ues of the pixels are stored in vector X . To fulfill the constraint of

perfect splitting, every frame gets assigned as even and odd accord-

ing to its number of appearance in the sequence as shown in Fig. 3.

Then every node of an even frame gets linked by a previously de-

fined neighborhood in the odd frame for constructing matrix J and

vice versa for matrix K. In Fig. 3 a 4-grid neighborhood is chosen

which is shown for node 6 of the even frame connected to the cor-

responding nodes 2,5,6,7 and 10 in the odd frame. After a proper

weighting of the referenced nodes, which is often measured as the

spatial or photometric similarity between i and j [11], the degree

matrices DJ/K of the weighted matrices J and K are computed.

Using random walks on Graph G delivers the Markov chain with the

transition matrices
PJ = D

−1

J
J

PK = D
−1

K
K.

(5)

According to [12] one element pij of such a transition matrix equates

the probability of being at node j starting from node i. Therefore the

transition matrices PJ and PK are used as prediction matrix JP and

update matrix KU respectively. Then a graph-based Haar wavelet

transform can be carried out on images:

H = Xeven − ⌊JP ×Xodd⌋

L = Xodd + ⌊
1

2
KU ×H⌋.

(6)
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Fig. 4: A zoom into the deformed grid of f2t−1 and the regular grid

of f2t shows the various edges which are used to calculate the pre-

diction matrix JP according to the weighting function wij(e) given

in (7).

By rearranging the vectors H and L containing the transform co-

efficients to the original frame size, the HP and the LP bands are

achieved again.

3.2. Conversion of Motion Vector Fields into Adjacency Matri-

ces

The varying distances resulting from the process of deforming and

upsampling the considered grid are used as edge weights in the pre-

diction matrix JP and the update matrix KU. Since the displace-

ments in the signal can mainly be characterized as contraction and

expansion of different kinds of tissue a proper weighting function is

required which assigns higher values to decreased edge lengths and

lower values to increased edge lengths.

Due to the deformed mesh and the graph connections there exists

a plenty of varying distances which can be used for a proper weight-

ing. As shown in Fig. 4 mainly two different kinds of connections

can be distinguished, namely:

- inter-frame edges eb: edges between the even and the odd

frame

- intra-frame edges ei: edges inside the odd frame

Considering the change of their length if the underlying grid gets

deformed a further differentiation can be introduced:

- regular edges ei: intra-frame edges on a regular grid

- compensated edges ẽi: intra-frame edges on a compensated

grid

Hence, if ẽi is smaller than the corresponding ei, a contraction of the

specific tissue occurs. Otherwise the classification of the underlying

movement is not unique, because if ẽi > ei, this can correspond to

an expansion of the tissue or another kind of tissue could be refer-

enced.

Keeping these definitions in mind a weighting function wij(e)
can be formed which assigns higher weights if a contraction is iden-

tified:

wij(e) = exp(−
1

2
· (e2b + e

2)) · exp(|eb − ẽi|),

e =

{

ẽi if ẽi < ei

eb else.

(7)

Other weighting functions would also be possible. After connecting

every node of frame f2t by a previously defined neighborhood to

the deformed frame f2t−1 and using the above described weighting

function, the resulting weights wij are used for calculating matrix

JP, as exemplarily shown in Fig. 4 for node 6 of the even frame f2t.

Matrix KU can easily be found by taking just the transpose of JP.

A further property of this method is based on the fact that the

upsampling process results in subpixel coordinates. A large number

of investigations showed, that it is of advantage to round them to full

pixel positions. Therefore it can occur that some end nodes are mul-

tiply referenced. This procedure contributes to a sharper differenti-

ation of the classification of the underlying movement and therefore

to a higher weighting of nodes belonging to a contraction.

4. SIMULATION RESULTS

To evaluate the proposed edge adaptive graph-based wavelet trans-

form three thorax data sets and one head CT data set were used. The

thorax sequences have a resolution of 512× 512 pixels at 12 bit per

sample and describe a beating heart over time. thorax1 and thorax2

each consist of 10 timesteps whereas thorax3 has 127 frames in spa-

tial direction. The head sequence consists of 36 frames in spatial

direction at the same bit depth with a resolution of 448×448 pixels.

For the simulation one Haar wavelet decomposition step is per-

formed. Beside the proposed edge adaptive graph-based method the

decomposition is done with a block-based, a mesh-based, and with-

out a MC method. For the edge adaptive graph-based MC a 25-

nearest-neighbor graph is used for connecting the particular even and

odd frames. The MC of the corresponding grid is calculated accord-

ing to [13] with a quadrilateral mesh and a grid size of 8× 8 pixels.

For comparison the mesh-based approach is calculated with the same

parameters, while the block-based approach uses a block size equal

to the grid size and a search range of 8 pixels. To overcome the un-

connected pixels appearing at the inversion in the update step of the

block-based MC a nearest-neighbor interpolation was used.

The averaged values regarding the visual quality and the mean

energy for the considered sequences and various compensation

methods can be seen in Table 1. As expected, the PSNR for all

methods is significantly higher than a wavelet transform without

any MC. As a consequence the mean energy of the corresponding

HP band which can be regarded as the prediction error for a com-

pensated wavelet transform decreases. By the last of row Table 1

a ∆ between the edge adaptive graph-based and the mesh-based

approach is provided. The table proves that the edge adaptive graph-

based MC outperforms the block-based and mesh-based approaches

in terms of visual quality of the LP band and also the mesh-based

approach regarding the mean energy of the HP band.

To evaluate the compressibility, the resulting subbands are coded

losslessly using the wavelet-based volume coder JPEG 2000. In this

simulation the OpenJPEG [14] implementation was used. The mo-

tion vector fields were coded using the QccPack library [15]. For

both subband volumes 4 further wavelet decomposition steps in xy-

direction were applied. Table 2 lists the filesizes in kilobytes from
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PSNR LP [dB] Mean energy HP

thorax1 thorax2 thorax3 head thorax1 thorax2 thorax3 head

no MC 43.85 42.86 43.37 33.74 2862.35 6103.93 3350.72 32101.65

block-based 47.51 46.09 46.99 38.31 827.35 1794.19 908.34 6504.12

mesh-based 49.92 47.90 49.40 40.31 767.66 2540.14 892.06 8256.79

edge adaptive graph-based 51.62 50.16 51.53 44.17 767.24 2327.04 862.48 7635.86

∆: proposed to mesh-based +1.70 +2.26 +2.13 +3.86 -0.42 -213.10 -29.58 -620.93

Table 1: The table lists results regarding the visual quality and the mean energy for the considered sequences and various compensation

methods. The values are averaged over the whole sequences, while the last row contains a delta between the proposed edge adaptive graph-

based and the mesh-based approach.

filesizes [kB]
thorax1 thorax2 thorax3 head

no MC

LP 715.63 828.20 9235.87 2570.01

HP 697.42 946.60 8574.07 3002.13

MVF - - - -

Σ 1413.05 1774.80 17809.94 5572.14

block-based

LP 859.64 985.98 10898.34 2849.85

HP 813.61 979.16 10356.63 2903.70

MVF 22.28 27.63 282.52 80.1152

Σ 1695.52 1965.77 21537.54 5833.66

mesh-based

LP 758.75 883.86 9633.65 2759.30

HP 733.48 916.73 9337.15 2841.11

MVF 20.18 24.34 254.20 62.66

Σ 1512.41 1824.93 19225.00 5663.06

edge adaptive graph-based

LP 857.40 950.61 10782.08 2825.85

HP 767.63 905.40 9555.49 2773.93

MVF 20.18 24.34 254.20 62.66

Σ 1645.21 1880.35 20591.77 5662.44

Table 2: The table summerizes the overall filesizes of the single

subband volumes and the required motion vector fields (MVF) for

the considered sequences and various compensation methods.

lossless coding of the LP, HP and the corresponding motion vector

fields and the sum of them for the considered sequences and various

compensation methods. According to [7] a wavelet transform with-

out any MC is recommended, when the quality of the LP band is

not of interest. This is confirmed by the first part of Table 2, where

the overall filesize for a wavelet transform without any MC is much

lower compared to the other approaches. The reasons for this be-

havior are the correlated noisy structures that can be exploited by

the traditional wavelet transform without a MC. However, if a com-

pensated wavelet transform is applied, it is not possible to exploit

the structures of the noise anymore. Therefore the particular file-

sizes of the single subbands increase. And in addition the corre-

sponding motion vector fields have also to be coded and contribute

to the overall filesizes. But when the LP band is used as a scalable

representation, the quality is important which can be increased by

various compensation methods. The mesh-based method achieves

a higher PSNR and a smaller filesize compared to the block-based

method. The edge adaptive graph-based approach achieves a further

improvement of the visual quality by 2.5 dB on average, while the

overall filesize decreases compared to the block-based MC but in-

creases slightly compared to the mesh-based MC. However, due to

the fact that the edge adaptive graph-based approach uses the same

motion vector fields as the mesh-based approach, the bits needed to

code the motion vector fields are exactly the same. This can be seen

in Table 2 by the rows regarding the filesizes of the motion vector

fields.

A low mean energy of the HP band indicates a good MC of the

odd frame. For a high quality LP band not only a good MC but

also a proper MC−1 is required. The block-based approach contains

annoying block artifacts in the LP band because of unconnected pix-

els. There exist various ways to conceal this erroneous structures

like interpolation methods on the motion vector fields as proposed in

[16] or extrapolation methods like FSE as shown in [17]. In contrast

the mesh-based approach has for the sequences thorax2 and head a

higher mean energy of the HP band, but the PSNR of the LP band is

better compared to the block-based approach according to Tabel 1.

The MC−1 of the mesh-based approach accepts an error by using

only an approximation term instead of the quite complex inversion

in the update step but works even better than the block-based ap-

proach. However, the proposed edge adaptive graph-based method

results in a quite low mean energy of the HP band and ends up in

a high quality LP band at the same time. The inversion of the edge

adaptive graph-based MC works very simple by just taking the trans-

pose of the prediction matrix.

5. CONCLUSION

In this paper a novel edge adaptive graph-based compensated

wavelet transform for medical data sets was introduced. To avoid

the usage of interpolated intensity values for motion compensation,

a new approach of exploiting common mesh-based motion vector

fields is proposed. By incorporating the geometric structure of the

data regarding the varying edge lengths of the compensated grid, a

high quality LP band and a HP band with a low mean energy can

be achieved. Since the motion information used for compensation

is exactly the same like the mesh-based approach uses, the number

of bits needed to code the motion vectors fields stays the same. As

the overall filesize is slightly larger compared to the mesh-based

approach, further work aims at the investigation of a proper cod-

ing of edge adaptive graph-based compensated subbands. Also the

suitability of different weighting functions should be examined.
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