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ABSTRACT

We propose an edge-preserving filtering method with a novel use of
the L0 gradient. Our method, termed as the L0 gradient projection,
is formulated as the minimization of a quadratic data-fidelity to an
input image subject to the constraint that the L0 gradient, the number
of non-zero gradients, of the output image is less than a user-given
parameter α. This strategy is much more intuitive than the conven-
tional approach, the L0 gradient minimization, that minimizes the
sum of the L0 gradient plus the quadratic data-fidelity, because one
can directly impose a desired degree of flatness by α, which is im-
possible in the L0 gradient minimization. We also provide an effi-
cient algorithm based on the so-called alternating direction method
of multipliers for solving the nonconvex optimization problem asso-
ciated with the L0 gradient projection. The utility of the L0 gradient
projection is illustrated by experiments.

Index Terms— L0 gradient, edge-preserving filtering, con-
strained optimization, nonconvex optimization

1. INTRODUCTION

Edge-preserving filtering is a basic tool in image processing, and
a variety of edge-preserving filtering methods have been proposed.
Among them, the L0 gradient minimization [1], which minimizes
the number of non-zero gradients, i.e., L0 gradient, of the output
image plus a quadratic data-fidelity to an input image, is known to
have a remarkable ability of edge-preserving flattening, so that it of-
fers many applications, such as edge extraction, clip-art compression
artifact removal and detail enhancement provided in the original pa-
per [1], and more [2–6]. At the same time, due to the nonconvexity
of the L0 gradient minimization, a number of algorithms for approx-
imately solving it have also been developed [7–9].

In the L0 gradient minimization, the degree of flatness of the
output image is controlled by a user-given parameter λ that bal-
ances the relative importance of the L0 gradient to the quadratic
data-fidelity. Arguably, selecting a suitable value of λ is a difficult
task because λ does not directly correspond to the degree of flatness
of the output image, as it just balances the two terms. Although the
larger λ results in the smaller L0 gradient value of the output im-
age, the explicit relation between them is unclear, and users cannot
specify the L0 gradient value of the output image in advance. Let
us give an example: we show two input images (almost the same
resolution) in Fig. 1(a), and the output images generated by the L0

gradient minimization with λ adjusted so that both images achieve
almost the same L0 gradient value in Fig. 1(b).1 One sees that λ
is quite different for each image, which means that users cannot im-
pose the same degree of flatness for different input images by simply
setting the same value of λ.

The work was partially supported by JSPS Grants-in-Aid (15H06197)
and JST-PRESTO.

1We used the algorithm proposed in [9] for optimization.

GradL0=30747 GradL0=30689
λ=0.93 α=30720

GradL0=30692 GradL0=30703
λ=0.36 α=30720

(a) Input image (b) L0 grad. min. (c) L0 grad. proj.

Fig. 1. L0 gradient minimization versus L0 gradient projection: we
show the L0 gradient values (GradL0 ) and the parameters used.

To resolve the difficulty, we propose an edge-preserving filtering
method based on a new use of L0 gradient, termed as the L0 gradient
projection. Specifically, we formulate the filtering as a constrained
optimization, where the quadratic data-fidelity to an input image is
minimized subject to the constraint that the L0 gradient value of the
output image is less than a user-given parameter α. In contrast to
the L0 gradient minimization, the parameter controlling the degree
of flatness in the L0 gradient projection, i.e., α, is the L0 gradient
value of the output image itself, so that users can directly impose a
desired degree of flatness by α (see Fig. 1(c)). Moreover, users can
determine α based on the number of the pixels or the L0 gradient
value of the input image.2 We also develop an efficient algorithm
based on the so-called alternating direction method of multipliers
(ADMM) [16–18] for solving the L0 gradient projection, where the
problem is split into two subproblems, and they are solved alter-
nately with a dual variable update. Although one of the subproblems
is still a constrained nonconvex optimization problem, we show that
a closed-form solution is available, yielding an efficient algorithmic
solution to the L0 gradient projection. Experimental results demon-
strate the utility of the L0 gradient projection.

2. PRELIMINARIES

For notational convenience, we treat a color image of size Nv ×Nh

as a vector u ∈ R3N (N = NvNh) by stacking its columns on top

2Such advantages of constrained formulation over unconstrained one in
terms of parameter setting have also been addressed in the literature of image
restoration based on convex optimization [10–15].
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of one another, in the order of the R, G and B channels.

2.1. L0 gradient

For a given color image u, the L0 gradient [1] is defined by

GradL0(u) :=

Nv∑
i=1

Nh∑
j=1

F

(
3∑

c=1

(|ui+1,j,c − ui,j,c|+ |ui,j+1,c − ui,j,c|)

)
,

where ui,j,c denotes the cth channel component of the pixel at (i, j),
and F (x) := 1, if x ̸= 0; F (x) := 0, otherwise. Note that
|ui+1,j,c − ui,j,c| := 0 (|ui,j+1,c − ui,j,c| := 0) if i + 1 > Nv

(j + 1 > Nh). In a word, GradL0 equals to the number of pixels
whose vertical and/or horizontal difference is nonzero, and thus it
quantifies the degree of flatness of u.

2.2. Alternating direction method of multipliers (ADMM)

The Alternating direction method of multipliers (ADMM) [16–18] is
an algorithm that can solve the following optimization problem:

min
x,y

f(x) + g(y) subject to y = Lx, (1)

by iterating
x(n+1) = argmin

x
f(x) + 1

2γ
∥y(n) − Lx− z(n)∥2

y(n+1) = argmin
y

g(y) + 1
2γ
∥y − Lx(n+1) − z(n)∥2

z(n+1) ← z(n) + Lx(n+1) − y(n+1).

(2)

Although ADMM was developed for convex optimization, it works
well in practice for nonconvex optimization, as reported in [18–23].

3. PROPOSED METHOD

3.1. Formulation of L0 gradient projection

For a given input image ū ∈ R3N , the L0 gradient projection is
formulated as follows:

Find u⋆ ∈ argmin
u∈R3N

1

2
∥u− ū∥2 subject to GradL0(u) ≤ α, (3)

where α is a user-given parameter being the least upper bound of
GradL0(u

⋆), i.e., a desired degree of flatness imposed on the output
image u⋆, and the cost function is the quadratic data-fidelity to the
input image ū. If we set α ≥ GradL0(ū), then the optimal solution
of Prob. (3) equals to ū itself. Otherwise, the optimal solution(s) of
Prob. (3) must be as close to ū as possible, so that u⋆ would satisfy
GradL0(u

⋆) = α. Hence, it characterizes the best approximation of
the input image ū within a user-given degree of flatness α.

Remark 1 (Comparison with L0 gradient minimization). The L0

gradient minimization [1] is formulated as follows:

Find u⋆
min ∈ argmin

u∈R3N

λGradL0(u) +
1

2
∥u− ū∥2, (4)

where λ > 0 is a user-given parameter that balances the two terms
in (4). As addressed in Sec. 1, the parameter λ does not directly cor-
respond to the degree of flatness of u⋆

min, meaning that one cannot
specify GradL0(u

⋆
min) in advance. In addition, GradL0(u

⋆
min) varies

depending on ū even if λ is fixed at a certain value. By contrast, the

parameter α in Prob. (3) forces u⋆ to satisfy GradL0(u
⋆) = α, so

that one can always obtain the output image of the desired degree of
flatness, independent of ū, as shown in Fig. 1(c). In addition, one
can set α using the information on ū, such as a certain percentage of
the number of pixels N or GradL0(ū).

3.2. Optimization of L0 gradient projection

Since Prob. (3) is nonconvex due to the L0 gradient, we establish
an efficient algorithm to approximately solve Prob. (3) based on
ADMM by reformulating the problem into (1). To this end, we
start with introducing another expression of the L0 gradient. Let
u ∈ R3N be a color image, and D ∈ R6N×3N be a discrete differ-
ence operator with periodic boundary that maps all the channels of a
color image to their vertical and horizontal discrete differences. We
also define the mixed L1,0 pseudo-norm as follows.

Definition 1 (Mixed L1,0 pseudo-norm). Let y be a vector of RM ,
and let G1, . . . ,GK (1 ≤ K ≤M ) be index sets such that
• Each Gk is a subset of {1, . . . ,M}.
• Gk ∩ Gl = ∅ for any k ̸= l.
• ∪K

k=1Gk = {1, . . . ,M}.
Suppose that yGk (k ∈ {1, . . . ,K}) denotes a subvector of y with
the entries specified by Gk. Then, the mixed L1,0 pseudo-norm of y
is defined as

∥y∥G1,0 := ∥(∥yG1∥1, · · · , ∥yGK∥1)∥0, (5)

where ∥ · ∥1 and ∥ · ∥0 denote the L1 norm and the L0 pseudo-norm,
respectively.

In short, the mixed L1,0 pseudo-norm counts the number of sub-
vectors whose L1 norm values are nonzero. Then, another expres-
sion of the L0 gradient is given by

GradL0(u) = ∥MDu∥G
′

1,0, (6)

where M ∈ R6N×6N is a diagonal matrix with binary entries (0
or 1) that forces discrete differences between opposite boundaries
(due to the periodic boundary condition of D) to be zero. Here, the
number of the subvectors equals to N , i.e., G′1, . . . ,G′N , and each G′k
contains the indices corresponding to the vertical and horizontal dif-
ferences at the kth pixel (to avoid confusion, we use G′ to represent
the specific index sets for the L0 gradient, instead of G).

Using the expression in (6) and introducing an auxiliary variable
v = Du, we can rewrite Prob. (3) as

Find u⋆ ∈ argmin
u∈R3N

1

2
∥u− ū∥2

subject to ∥Mv∥G
′

1,0 ≤ α and v = Du. (7)

Next, we define the indicator function of the inequality constraint on
the mixed L1,0 pseudo-norm composed with the operator M:

ι{∥M·∥G1,0≤α}(y) :=

{
0, ∥My∥G1,0 ≤ α,

∞, otherwise.
(8)

Then, Prob. (7) is further reformulated as follows:

Find (u⋆,v⋆) ∈ argmin
u ∈ R3N

v ∈ R6N

1

2
∥u− ū∥2 + ι{∥M·∥G′

1,0≤α}(v)

subject to v = Du. (9)
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3.2.1. Algorithm

Now one can see that Prob. (9) is identical to Prob. (1) by letting
f := ∥·−ū∥2, g := ι{∥M·∥G′

1,0≤α} and L := D. Thus, we can apply

ADMM to Prob. (9), yielding an abstract version of our algorithm:
for arbitrarily chosen v(0),w(0) and γ > 0, the algorithm iterates

u(n+1) = argmin
u∈R3N

1
2
∥u− ū∥2 + 1

2γ
∥v(n) −Du−w(n)∥2

v(n+1) =

argmin
v∈R6N

ι{∥M·∥G′
1,0≤α}(v) +

1
2γ
∥v −Du(n+1) −w(n)∥2

w(n+1) ← w(n) +Du(n+1) − v(n+1).

(10)

In what follows, we show that closed-form solutions to the sub-
problems in (10) are available, and describe the detailed procedures
of our algorithm.

Since the first subproblem, the update of u(n), is a strictly con-
vex quadratic minimization, it boils down to solving a system of
linear equations, yielding

u(n+1) = (I+ γ−1D⊤D)−1(ū+ γ−1D⊤(v(n) −w(n))). (11)

Thanks to the periodic boundary condition of D, the matrix inversion
in (11) can be computed efficiently via the 2D fast Fourier transform,
i.e., the inversion in Eq. (11) can be calculated as

u(n+1) = F∗(I+ γ−1Λ)−1F(ū+ γ−1D⊤(v(n) −w(n))), (12)

where F and F∗ are the 2D discrete Fourier transform matrix and its
inverse, respectively, and Λ is a diagonal matrix with its entries be-
ing the Fourier-transformed Laplacian filter kernel. Since I+ γ−1Λ
is a diagonal matrix, its inversion is reduced to entry-wise division.

By noticing the definition of the indicator function in (8), the
second subproblem, the update of v(n), can be rewritten as follows:

v(n+1) = argmin
v∈R6N

∥v −Du(n+1) −w(n)∥2

subject to ∥Mv∥G
′

1,0 ≤ α, (13)

where the weight 1
2γ

is removed since it is irrelevant to the optimiza-
tion. Prob. (13) might appear to be difficult, but fortunately its opti-
mal solution can be computed in a closed form, which is guaranteed
by the following result.

Proposition 1 (Projection onto mixed L1,0 pseudo-norm constraint
with binary mask). Let z be a vector of RM , let α be a positive
integer, let S ∈ RM×M be a diagonal matrix with its diagonal
entries being binary. and let G1, . . . ,GK (1 ≤ K ≤ M) be in-
dex sets satisfying the conditions in Definition. 1. Without loss of
generality, we can assume that Sz = (z⊤G1

· · · z⊤GK
)⊤. In addi-

tion, we denote the subvectors zG1 , . . . , zGK sorted in descending
order in terms of their L2 norm values by zG(1)

, . . . , zG(K)
, i.e,

∥zG(1)
∥ ≥ ∥zG(2)

∥ ≥ · · · ≥ ∥zG(K)
∥. Consider the problem:

Find y⋆ ∈ argmin
y∈RM

∥y − z∥2 subject to ∥Sy∥G1,0 ≤ α. (14)

Then, one of the optimal solutions of the problem is given by

y⋆ =

{
z, if ∥Sz∥G1,0 ≤ α,

(z̃⊤G1
· · · z̃⊤GK

)⊤ + (I− S)z, if ∥Sz∥G1,0 > α,
(15)

Algorithm 1: L0 gradient projection by ADMM

input : ū,v(0) = w(0) = Dū, γ > 0, and 0 < η < 1
while |GradL0(u

(n))− α| > ε do
u(n+1) = F∗(I+ γ−1Λ)−1F(ū+D⊤(v(n) −w(n)));
v(n+1) = M(Du(n+1) −w(n));
Compute (1), . . . , (N) by sorting v

(n+1)

G′
1

, . . . ,v
(n+1)

G′
N

in

descending order in terms of their L2 norm values;
Set v(n+1)

G′
(α+1)

= 0, . . . ,v
(n+1)

G′
(N)

= 0 in v(n+1);

v(n+1) ← v(n+1) + (I−M)(Du(n+1) −w(n));
w(n+1) = w(n) +Du(n+1) − v(n+1);
γ ← ηγ;
n← n+ 1;

output: u(n)

where

z̃Gk :=

{
zGk , if k ∈ {(1), . . . , (α)},
0, if k ∈ {(α+ 1), . . . , (K)}.

(16)

Due to the space limit, we leave the proof to the journal version
of the paper [24].3

Recalling that M in (6) is a special case of S, the above re-
sult states that the closed-form solution to the second subproblem
is available as follows: (i) compute (1), . . . , (N) by sorting the
subvectors of M(Du(n+1) − w(n)) in terms of their L2 norm
values; (ii) substitute zero vectors for the subvectors specified by
G′(α+1), . . . ,G′(N), and then (iii) add (I−M)(Du(n+1) −w(n)).

Finally, our algorithm is detailed in Algorithm 1. In the algo-
rithm, a scalar η is introduced to gradually decreases the value of γ
(we recommend η ∈ [0.95, 0.99]), which stabilizes ADMM for non-
convex optimization. Similar strategies are also employed in existing
L0 gradient minimization algorithms [1, 7–9].

We will show in Sec. 4 that |GradL0(u
(n))−α| decreases mono-

tonically by the algorithm, so that the L0 gradient value of the output
image is expected to be α, where the stopping criterion ε determines
the allowable error from α.

Remark 2 (Computational cost of Algorithm 1). At the update of
u(n+1), we can use FFT to solve the matrix inversion efficiently,
and thus the cost is O(N logN) time. At the update of v(n+1), the
sorting of the L2 norm values of N subvectors is most expensive,
which requiresO(N logN) time. The cost of the update of w(n+1)

is simplyO(N) time. As a result, the cost of each iteration of Algo-
rithm 1 is O(N logN) time.

4. EXPERIMENTS

To illustrate the utility of the L0 gradient projection, we conducted
experiments on image smoothing with various α. Specifically, we
compare output images generated with α set to 16%, 8%, 4% and 2%
of the number of pixels of input images. The input images are of size
(approximately) 640 × 420, which were took from a large database
of royalty-free images [25]. All experiments were performed using

3In [24], we also provide (i) deeper discussions on our method, including
the effectiveness of our algorithm in the sense of the L0 gradient minimiza-
tion and the relation to existing L0 gradient minimization algorithms; and
(ii) extensive experiments, where we compare our algorithm with several L0

gradient minimization algorithms and present illustrative applications.
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Parrot 31.57 27.55 24.36 21.41

Fresco 20.22 16.21 13.30 11.47

Flowers 24.37 20.80 17.79 15.22

Building PSNR=27.32 PSNR=23.19 PSNR=20.15 PSNR=17.16

Input image 16% 8% 4% 2%

Fig. 2. Input images (the left column), and the output images generated by L0 gradient projection with α set to various percentages of the
number of pixels (we also show PSNR[dB] between input and output images for reference).
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Fig. 3. Convergence profiles of our algorithm on computing the out-
put images shown the top row of Fig. 2.

MATLAB (R2014a, 64bit), on a Windows 10 (64bit) laptop com-
puter with an Intel Core i7 2.6 GHz processor and 8 GB of RAM.
For the parameters of Algorithm 1, we set γ = 3, η = 0.97, and
ε = 0.0002N in all the experiments.

The results are shown in Fig. 2, where for each row, the left
is an input image, and the others are the output images with their
PSNR[dB]. One sees that setting α to the same percentage of N
(each column of Fig. 2) generates the output images of the same
degree of flatness, which offers an easy setting of α in many ap-
plications, such as segmentation, character recognition, and color
quantization.

Fig. 3(a) depicts convergence plots of the gap from α (on Par-

rot), i.e., |GradL0(u
(n))−α|, versus the CPU time. We observe that

for every α, the gap decreases monotonically and converges to zero,
implying that output images satisfies user-given L0 gradient values.
Fig. 3(b) shows the evolution of PSNR between u(n) and ū, i.e., the
convergence of the cost function (quadratic data-fidelity), versus the
CPU time. One can see that PSNR also converges to a certain value
for every α, The reason why PSNR in early iterations is higher than
the converged value is that the initial variable u(0) is set to the input
image ū. These observations demonstrate that our algorithm works
well in practice for the L0 gradient projection.

5. CONCLUSION

We have proposed a new edge-preserving filtering method based on
the L0 gradient, named the L0 gradient projection. In contrast to the
L0 gradient minimization, our L0 gradient projection framework is
very intuitive because one can directly impose a desired degree of
flatness (i.e, L0 gradient value) on the output image. We estab-
lished an ADMM-based algorithm that can solve the L0 gradient
projection in O(N logN) time, and we empirically showed that fil-
tered images generated by the algorithm satisfies user-given L0 gra-
dient values. We expect that our framework facilitates the use of L0

gradient-based image flattening in a variety of applications.
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