
LOCALITY SENSITIVE HASHING BASED DEEPMATCHING FOR OPTICAL FLOW
ESTIMATION

Chen Wang, Zongqing Lu, Qingmin Liao∗

Department of Electronic Engineering/
Graduate School at Shenzhen,

Tsinghua University, China

Danyi Li

State Key Laboratory of Information Security,
Institute of Information Engineering,

CAS, Beijing, China

ABSTRACT

DeepMatching (DM) is one of the state-of-art match-
ing algorithms to compute quasi-dense correspondences
between images. Recent optical flow methods use Deep-
Matching to find initial image correspondences and achieves
outstanding performance. However, the key building block
of DeepMatching, the correlation map computation, is time-
consuming. In this paper, we propose a new algorithm, LSH-
DM, which addresses the problem by employing Locality
Sensitive Hashing (LSH) to DeepMatching. The computa-
tional complexity is greatly reduced for the correlation map
computation step. Experiments show that image matching
can be accelerated by our approach in ten times or more com-
pared to DeepMatching, while retaining comparable accuracy
for optical flow estimation.

Index Terms— Image correspondence, DeepMatching,
Locality Sensitive Hashing, Optical Flow

1. INTRODUCTION

Optical flow estimation plays a fundamental role in many
computer vision and image processing tasks, such as object
detection and tracking, super-resolution and video de-noising.
Over the last several years, great improvement of optical flow
methods handling small displacement is witnessed by the
Middlebury benchmark[1]. However, estimating optical flow
accurately from real-world scenarios, where large displace-
ments and occlusions often occur, still remains a challenging
problem[2, 3]. Traditional approaches[4, 5] minimize the
optical flow energy functional using a coarse-to-fine scheme.
The optimization procedure often gets stuck in local minima
and leads to over-smoothing the estimated flow. To overcome
such problem, LDOF [6] proposed by Brox and Malik suc-
cessfully integrates sparse descriptor matching in the energy
minimization framework. The key idea is to use descriptor
correspondences to guide the variational optimization. Since
then, several works incorporate feature matching into their

∗Corresponding Author, E-mail: liaoqm@tsinghua.edu.cn. This work
was supported by Shenzhen STP(JCYJ20150331151358150).

approach[7, 8, 9, 10, 11, 12, 13]. LDOF uses sparse HOG
descriptors matched by nearest neighbor search. Another few
works use dense approximate nearest neighbor field (ANNF),
instead of sparse descriptors [11, 13] and produce remarkable
results on the Middlebury dataset. More recently, Revaud
et al.[14] proposed a new matching algorithm called Deep-
Matching. The DeepMatching algorithm produces quasi-
dense correspondences for image pairs, and is able to deal
with non-rigid deformation and large displacement. Many
top-ranked methods on MPI-Sintel dataset is base on Deep-
Matching to obtain initial image correspondences, either
for energy minimization[15] or for interpolation[8]. In [8],
the authors show that DeepMatching outperforms ANNF
and sparse feature matching in their optical flow estimation
framework. The main drawback of DeepMatching is the
high computational complexity. DeepMatching possesses a
O(N2) complexity, where N is the total pixel number of
one input image. As the image size grows, the computation
cost explodes. As a consequence, DeepMatching is usually
performed on a down-sampled version of the original images.

Hashing-based approximate nearest neighbor search
methods received significant attention in the past years[16,
17]. With a well designed hashing function, all features can
be converted into binary hashing codes. Computing the Ham-
ming distance of hashing codes is by conducting one bitwise
XOR operation, which is very fast on modern CPUs. In this
paper, we propose to employ hashing to accelerate Deep-
Matching. The utilized hashing method, Locality Sensitive
Hashing, is an unsupervised and data-independent method,
therefore training-free. Experiment demonstrate that Deep-
Matching can be accelerated by our approach in ten times or
more, while retaining comparable accuracy for optical flow
estimation.

The rest of this paper is organized as follows. Section 2
briefly summarizes the DeepMatching and LSH algorithms.
Section 3 introduces the proposed LSH-DM algorithm. Sec-
tion 4 evaluates the proposed method with a number of exper-
iments. Finally, Section 5 concludes this paper with remarks
on our future work.

1472978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

2. DEEPMATCHING AND LOCALITY SENSITIVE
HASHING

In this paper, we propose a hashing based method for the cor-
relation map computation in DeepMatching, to speed up im-
age matching for optical flow estimation. In our method, a
simple hashing algorithm, Locality Sensitive Hashing (LSH),
is adopted to generate binary code for SIFT descriptor ex-
tracted from image patches. Consequently, we will give a
brief introduction to the DeepMatching and LSH algorithms
in this section.

2.1. DeepMatching

We begin this section by introducing the DeepMatching
algorithm[14]. DeepMatching is based on feature correla-
tion at the patch-level. Given the source image I0 and the
target image I1, the correlation map is the matching scores
of a single patch p from image I0 at every position in image
I1. Features extracted for matching patches are based on the
SIFT/HOG descriptor. The correlation of 4×4 patches P,P′

is defined by

corr(P,P′) =
1

16

3∑
i=0

3∑
j=0

P⊤
i,jP

′
i,j , (1)

where the pixel descriptor Pi,j is defined by the histogram of
oriented gradients pooled over a 4 × 4 neighborhood. In (1),
the patches are compared using inner product and the corre-
lation score takes value in the interval [0, 1].

Correlation maps are computed for non-overlapping
patches on regular grids in the source image. Once the
bottom correlation maps are obtained, the correlation maps of
larger patches are computed by aggregating correlation maps
of smaller children patches. The aggregation is performed in
a quadtree-like manner:

corr(P,P′) =
1

4

3∑
i=0

max
xi

corr(Pi,P
′
i(xi)) (2)

where P′
i(xi) is the descriptor of one of the quadrant patches

extracted at position xi. A correlation map pyramid is thereby
constructed from the bottom to the top. The advantage of such
optimization with regard to quadrant positions is that non-
rigid motions are well handled. Inspired by the deep convo-
lutional neural network approaches [18], the aggregation step
can be divided into several basic operations including max-
pooling, sub-sampling, shift and rectification, as illustrated in
[14].

Top correlation maps are built from sub-patches at the
lower pyramid level, so one can recursively backtrack cor-
respondences from the top to the bottom level of the pyramid.
We also refer to [14] for more details of aggregation and back-
tracking strategy in DeepMatching.

Figure 1 shows the time cost of separate operations in the
DeepMatching pipeline. It is clear that the correlation map
computation step occupies most of the consuming time. As
the image size grows, computing the correlation map occu-
pies even more proportion of the total time.

Patch Correlation

Max−pooling+Subsampling

Aggregation

Rectification
Back−tracking

(a) 0.5x image size

Patch Correlation

Max−pooling+
Subsampling

Aggregation
Rectification

Back−tracking

(b) 1x image size

Fig. 1. Time cost of separate operations in the DeepMatching
pipeline. As the image size grows, correlation map computa-
tion occupies more proportion of the total time.

2.2. Locality Sensitive Hashing

Given a set of d-dimensional features X = {x1, x2, . . . , xn},
where xi ∈ Rd, LSH relies on the existence of locality sensi-
tive hashing functions. LetF be a family of hashing functions
mapping the feature space Rd to Hamming space H. For any
two points xi and xj , a hashing function h is picked from F
uniformly at random. The idea is that if two points xi and
xj in Rd are close, then the probability that h(xi) = h(xj)
should be higher. In formal terms, F is locality sensitive if it
satisfies the following conditions:

Definition 2.1 (Locality Sensitive Hashing). A family F of
functions from Rd to H is called (r1, r2, p1, p2)-sensitive for
D(·, ·), if for any x, y ∈ Rd and h chosen uniformly at ran-
dom from F satisfies the following:

• Prh∈F [h(x) = h(y)] ≥ p1, if D(x, y) ≤ r1;

• Prh∈F]h(x) = h(y)] ≤ p2, if D(x, y) ≥ r2,

where D(·, ·) is a distance function in the feature space Rd.
Obviously, a family F is valid only when r1 < r2 and p1 >
p2.

A hashing function h ∈ F for the widely used L2 dis-
tance is given by [19]. More specifically, a random vector
r is drawn independently from a zero-mean d-dimensional
Gaussian distribution N (0, I), with this hyperplane r, hash-
ing function h is defined as:

hr(q) =

{
1, if r · q > 0
0, if r · q < 0

(3)

known as the sign random projections (SRP)[19, 20]. The
authors of [20] proved that

Pr(hr(x) = hr(y)) = 1− θ(x, y)

π
(4)

1473

for any data point x and y, where

θ(x, y) = cos−1(
x⊤y

∥x∥∥y∥
) (5)

is the angle between x and y. Let D(x, y) = θ(x,y)
π and p1 =

1 − r1 , p2 = 1 − r2. It is easy to prove that F satisfies
Definition 2.1. It can be seen that SRP is designed for cosine
similarity, which is equivalent with L2 distance when features
are normalized.

In real cases, K concatenation of hashing functions is
used to amplify the gap between p1 and p2. The hash function
h is actually a concatenation of primitive functions: h(x) =
⟨h1(x), h2(x), . . . , hK(x)⟩.

3. LSH-DM

3.1. The LSH-DM Algorithm

Now we introduce our proposed method, LSH-DM. From
Definition 2.1 we know that hash codes of highly correlated
patches are close in the Hamming space, thanks to the nice
property of Locality Sensitive Hashing. Therefore, we use
Hamming distance of hash codes to represent the matching
score. Small Hamming distance of the hash codes indicates
high correlation of the original features. Equation (1) then
becomes:

corr(P,P′) =
1

16

3∑
i=0

3∑
j=0

sDH(h(Pi,j), h(P
′
i,j)), (6)

where s is a scaling parameter mapping the correlation score
to [0, 1].

Figure 2 gives an example of the correlation map of one
single patch. We can see that the Hamming distance of hash
codes (Figure 2(b)) approximates the Euclidean distance (Fig-
ure 2(a)) well, especially in the high correlation score regions.

(a) Original Correlation Map (b) LSH Correlation Map

Fig. 2. Correlation map from DM and LSH-DM. Red areas
represent high correlation scores. The correlation maps gen-
erated by Euclidean distance of SIFT descriptors and Ham-
ming distance of hashing codes are similar.

The Box-Muller[21] method is used to generate a projec-
tion matrix M . Each row of M is ri ∼ N (0, I). Once the pro-

jection matrix is generated, patches from both source and tar-
get images are hashed using LSH (refer to Section 2.2). The
hash code length K balances the trade-off between complex-
ity and accuracy. In the experiments we observed that good
trades-off were achieved at code length of 128 < K < 1024.
We use K = 512 in the rest of the paper. The other steps of
the proposed method are the same as DeepMatching.

The proposed LSH-DM algorithm is summarized in Al-
gorithm 1.

Algorithm 1 LSH-DM
Input: I0, I1

1: Extract patch features p,p′

2: Generate Projection Matrix M
3: Hash source and target patches (Eq. 3)
4: Compute correlation maps (Eq. 6)
5: N ← 4
6: While N < max(W,H) do

Aggregate patches (Eq. 2)
N ← 2N

7: Backtracking correspondences to the bottom level

3.2. Complexity Analysis

DeepMatching computes a correlation map for every single
patch from the source image. Suppose that the source im-
age and the target image have the same size of pixel N . The
correlation maps consist of O(N2) feature correlation scores,
which are the Euclidean distances of features in Rd with d de-
noting the descriptor length. The time cost is approximately
O(N2T), where T is the consuming time for computing a
d-dimensional inner product (dot product).

As for LSH-DM, we first generate a random d ×K pro-
jection matrix, which has negligible time cost. Then we hash
both the source and target image patches with O(KNT) com-
plexity. The correlation scores in LSH-DM are computed by
O(N2) Hamming distances. Note that in modern CPUs, com-
puting Hamming distance for 128-bit hash codes in Hamming
space costs only one CPU cycle, which is hundreds of times
faster than computing Euclidean distance. In fact, it is easy
to realize ten times or more acceleration with LSH-DM for
high-resolution image pairs, without much loss of accuracy.

4. EXPERIMENT

The proposed LSH-DM algorithm was evaluated using the
MPI-Sintel dataset[2] and the KITTI 2012 dataset[3]. All
experiments are carried out on a desktop PC with i7-4790K
CPU and 128 GB memory, Windows 7 64-bit operating sys-
tem. No parallel computation is used. For DeepMatching, we
slightly modified the code from the author’s website to adapt
for our operating system. The LSH-DM algorithm is also im-
plemented using C++ for fair comparison. For the optical flow

1474

algorithm, we use the Epic-flow method[8], which is a state-
of-art method for interpolating matches to obtain dense flow
fields.

4.1. Qualitative Evaluation

Figure 3 shows a visual comparison of the DeepMatching
and LSH-DM matching result. Both methods produces quasi-
dense matches. The matches from LSH-DM are generated
at different positions, yet the density and accuracy of the
matches are similar compared with DM.

(a) DM Result

(b) LSH-DM Result

Fig. 3. Example of DM and LSH-DM results on consecu-
tive frames from the MPI-Sintel dataset. LSH-DM generate
different, yet accurate matches with similar density.

Figure 4(c) and (d) further shows the optical flow results
by DM+Epic and LSH-DM+Epic, respectively. Both meth-
ods first obtain image matches, either by DM or LSH-DM,
then perform Epic[8] to compute the optical flow fields. We
can see that both methods generate high quality flow fields.
The influence of different matches and matching accuracy
on optical flow estimation is beyond the scope of this paper.
LSH-DM speeds-up the matching procedure by ten times or
more, while the flow field by LSH-DM+Epic has comparable
accuracy.

(a) Source Image (b) Target Image

(c) DM+Epic Result (d) LSH-DM+Epic Result

Fig. 4. Example of DM+Epic and LSH-DM+Epic optical
flow results on MPI-Sintel dataset.

Method matches Acc@10 AEE Speed-Up
DM[14] 5920 0.892 3.686 -

LSH-DM 5508 0.866 3.709 12.1063x

Table 1. Experimental results on MPI-Sintel test dataset

Method matches Acc@10 AEE Speed-Up
DM[14] 5357 0.856 3.334 -

LSH-DM 5084 0.827 3.361 11.5569x

Table 2. Experimental results on KITTI 2012 dataset

4.2. Quantitative Evaluation

Following the DeepMatching framework, we use an objective
measure ”accuracy@T” defined as the proportion of correctly
matched pixels from the first image with respect to the total
number of pixels. A pixel is considered correctly matched if
its match in the second image is close enough to (i.e. less than
T pixels away from) ground-truth. In the experiments, we use
a threshold of T = 10. For evaluating optical flow results, we
use the average end-point error (AEE).

Table 1 and 2 enumerates number of matches, matching
error, optical flow error and Speed-Up for LSH-DM com-
pared with DeepMatching, on the MPI-Sintel dataset and the
KITTI 2012 dataset, respectively. Experiments show that
LSH-DM can effectively produce matches with high quality
for optical flow estimation. A speed-up of more than ten
times is easily achieved. Speed boosting by hashing methods
often results in performance deterioration, which has been
reported in many other applications such as nearest neigh-
bor searching. However, our proposed LSH-DM not only
significantly improves matching speed, but also ensures the
matching performance, especially for optical flow estimation,
with only less than 1% drop of performance.

5. CONCLUSION

Recent optical flow methods use feature matching methods
to find initial image correspondences to guide optical flow.
DeepMatching is one of the state-of-art matching algorithms
frequently used. However, the correlation map computation
step in DeepMatching is time-consuming. A new algorithm,
LSH-DM, is proposed to address the problem. LSH-DM em-
ploys Locality Sensitive Hashing (LSH) to DeepMatching to
efficiently compute the correlation map. The computational
complexity is greatly reduced. Experiments show that Deep-
Matching can be accelerated by the proposed approach in ten
times or more, while retaining comparable accuracy for opti-
cal flow estimation. Future work includes incorporating su-
pervised hashing method in DM, as well as algorithm paral-
lelization on modern GPUs.

1475

6. REFERENCES

[1] Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth,
Michael J Black, and Richard Szeliski, “A database and
evaluation methodology for optical flow,” International
Journal of Computer Vision, vol. 92, no. 1, pp. 1–31,
2011.

[2] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A
naturalistic open source movie for optical flow evalua-
tion,” in European Conf. on Computer Vision (ECCV),
2012.

[3] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for
autonomous driving? the kitti vision benchmark suite,”
in Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, 2012, pp. 3354–3361.

[4] Thomas Brox, Andrés Bruhn, Nils Papenberg, and
Joachim Weickert, “High accuracy optical flow esti-
mation based on a theory for warping,” in Computer
Vision-ECCV 2004, pp. 25–36. Springer, 2004.

[5] Christopher Zach, Thomas Pock, and Horst Bischof, “A
duality based approach for realtime tv-l 1 optical flow,”
in Pattern Recognition, pp. 214–223. Springer, 2007.

[6] T. Brox and J. Malik, “Large displacement optical flow:
descriptor matching in variational motion estimation,”
IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 33, no. 3, pp. 500–513, 2011.

[7] Jim Braux-Zin, Romain Dupont, and Adrien Bartoli, “A
general dense image matching framework combining di-
rect and feature-based costs,” in International Confer-
ence on Computer Vision (ICCV). IEEE, 2013.

[8] Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui,
and Cordelia Schmid, “EpicFlow: Edge-Preserving In-
terpolation of Correspondences for Optical Flow,” in
Computer Vision and Pattern Recognition, 2015.

[9] Marius Leordeanu, Andrei Zanfir, and Cristian Smin-
chisescu, “Locally affine sparse-to-dense matching for
motion and occlusion estimation,” in Proceedings of the
2013 IEEE International Conference on Computer Vi-
sion, 2013, ICCV ’13, pp. 1721–1728.

[10] Li Xu, Jiaya Jia, and Y. Matsushita, “Motion detail pre-
serving optical flow estimation,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 34,
no. 9, pp. 1744 –1757, 2012.

[11] Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and
Ying Wu, “Large displacement optical flow from near-
est neighbor fields,” in Proceedings of the 2013 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2013, CVPR ’13, pp. 2443–2450.

[12] Radu Timofte and Luc Van Gool, “Sparse flow: Sparse
matching for small to large displacement optical flow,”
in WACV, 2015.

[13] O. U. N. Jith, S. A. Ramakanth, and R. V. Babu, “Opti-
cal flow estimation using approximate nearest neighbor
field fusion,” in 2014 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
May 2014, pp. 673–6577.

[14] Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui,
and Cordelia Schmid, “Deepmatching: Hierarchical
deformable dense matching,” International Journal of
Computer Vision, vol. 120, no. 3, pp. 300–323, 2016.

[15] Philippe Weinzaepfel, Jerome Revaud, Zaid Harchaoui,
and Cordelia Schmid, “Deepflow: Large displacement
optical flow with deep matching,” in IEEE Intenational
Conference on Computer Vision (ICCV), 2013.

[16] Aristides Gionis, Piotr Indyk, and Rajeev Motwani,
“Similarity search in high dimensions via hashing,” in
Proceedings of the 25th International Conference on
Very Large Data Bases, 1999, VLDB ’99, pp. 518–529.

[17] Piotr Indyk and Rajeev Motwani, “Approximate nearest
neighbors: Towards removing the curse of dimensional-
ity,” in Proceedings of the Thirtieth Annual ACM Sym-
posium on Theory of Computing, 1998, STOC ’98, pp.
604–613.

[18] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, Nov 1998.

[19] Moses S. Charikar, “Similarity estimation techniques
from rounding algorithms,” in Proceedings of the Thiry-
fourth Annual ACM Symposium on Theory of Comput-
ing, 2002, STOC ’02, pp. 380–388.

[20] Michel X. Goemans and David P. Williamson, “Im-
proved approximation algorithms for maximum cut
and satisfiability problems using semidefinite program-
ming,” J. ACM, vol. 42, no. 6, pp. 1115–1145, Nov.
1995.

[21] G. E. P. Box and M. E. Muller, “A note on the generation
of random normal deviates,” Annals Math. Stat., vol. 29,
pp. 610, 1958.

1476

