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Abstract— Dictionary learning follows a synthesis 

framework; the dictionary is learnt such that the data can be 
synthesized / re-generated from the coefficients. Transform 
learning on the other hand is based on analysis formulation; it 
learns a transform so as to generate the coefficients. The basic 
formulations of dictionary learning and transform learning 
employ a Euclidean cost function for the data fidelity term. Such 
cost functions are optimal when the noise / error in the system is 
Normally distributed, but not in the presence of sparse but large 
outliers. For such heavy tailed noise distributions, minimizing 
the absolute distance is more robust. There are several papers 
on robust dictionary learning. This work introduces robust 
transform learning. Experiments carried out on image analysis 
and impulse denoising elucidate the superiority of our method.    

Keywords— Analysis Dictionary Learning, Robust 
Estimation, Feature Extraction, Denoising  

I.  INTRODUCTION  

 
Fig. 1: Schematic Diagram for Dictionary Learning 

In dictionary learning, we find a basis and learn the 
corresponding coefficients from the training data such that 
the basis / dictionary can synthesize / generate the training 
data. It was introduced in late 90’s as an empirical tool to 
learn filters [1, 2]. The usual understanding of dictionary 
learning is shown in Fig. 1. The dictionary (D) and the 
coefficients (Z) are learnt from the data (X) such that the 
learnt dictionary and the coefficients can synthesize the data. 
Mathematically this is represented as, 

X DZ=      (1) 

Early studies in dictionary learning focused on learning a 
basis for representation. There were no constraints on the 
dictionary atoms or on the loading coefficients. The method 
of optimal directions [3] was used to learn the basis: 

2

,
min

FD Z
X DZ−      (2) 

Here, X is the training data, D is the dictionary to be learnt 
and Z consists of the loading coefficients. 

For problems in sparse representation, the objective is to 
learn a basis that can represent the samples in a sparse 
fashion, i.e. Z needs to be sparse. K-SVD [4] is the most well-
known technique for solving this problem. Fundamentally, it 
solves a problem of the form: 

2

0,
min such that 

FD Z
X DZ Z τ− ≤    (3) 

Here we have abused the notation slightly, the l0-norm is 
defined on the vectorized version of Z. The problem with K-
SVD is that it is slow, since it requires computing the SVD in 
every iterations and updating the coefficients via orthogonal 
matching pursuit. A faster solution to dictionary learning can 
be obtained by employing direct optimization methods [5]. 

 
Fig. 2: Schematic Diagram for Transform Learning 

Transform learning analyses the data by learning a 
transform / basis to produce coefficients. Mathematically this 
is expressed as, 

TX Z=       (4) 

Here T is the transform, X is the data and Z the corresponding 
coefficients. One may be enticed to solve the transform 
learning problem by formulating, 

2

0,
min +

FT Z
TX Z Zµ−     (5) 

Unfortunately such a formulation may lead to the trivial 
solution T=0 and Z=0. In order to ameliorate this, the 
following formulation was proposed in [6] –  

( )2 2

0,
min + log det +

F FT Z
TX Z T T Zλ µ− −   (6) 

The factor log detT− imposes a full rank on the learned 
transform; this prevents the degenerate solution. The 

additional penalty 
2

F
T is to balance scale; without this 

log detT− can keep on increasing producing degenerate 
results in the other extreme. Exactly the same formulation 
was restated as analysis dictionary learning in [7].  

X D

Z

=

X

Z

=

T
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Dictionary learning has been employed extensively in 
solving various inverse problems [8-10]. Supervised 
dictionary has gained immense popularity in machine vision 
[11-13]. In all these studies, the data fidelity term is a 
Euclidean norm; this is based on the tacit assumption that the 
noise / error is Normally distributed. Even if that is not the 
case, researchers in signal processing and computer vision 
prefer employing the Euclidean norm owing to the relative 
ease of solution.  

In signal processing literature, there have been studies 
where dictionary learning have been employed to solve 
problems that are known to be corrupted by sparse but large 
outliers. It has been used for solving impulse denoising 
problems [14, 15]; in recent times robust dictionary learning 
has been used in energy analytics where the signals are 
known to be corrupted by power surges which are sparse but 
of large magnitude [16, 17]. Owing to the heavy tailed 
distribution of such outliers, the aforementioned works [14-
17] have proposed employing an l1-norm for data fidelity 
cost.  

In this work we propose a robust version of transform 
learning. This is achieved by replacing the l2 / Frobenius norm 
of the data fidelity term in (6) by an l1-norm. This makes the 
problem slightly difficult to solve. However following the 
Split Bregman technique we propose an efficient solution. 
We have carried out experiments on impulse denoising on 
images and have used it as a tool for feature extraction.  

The rest of paper is organized in several sections. Since 
there are only a handful of studies in transform learning, we 
review it the following section. The proposed robust 
transform learning is described in section III. The 
experimental results are shown in section IV. The 
conclusions of this work are discussed in section V. 

II. TRANSFORM LEARNING  

We repeat the formulation for transform learning from 
(6). 

( )2 2

0,
min + log det +

F FT Z
TX Z T T Zλ ε µ− −  

In [6, 18], an alternating minimization approach was 
proposed to solve the transform learning problem. This is 
given by –  

2

0
min

FZ
Z TX Z Zµ← − +    (7) 

( )2 2
min + logdet

F FT
T TX Z T Tλ ε← − −   (8) 

Updating the coefficients (7) is straightforward. It can be 
updated via one step of Hard Thresholding. This is expressed 
as, 

( )( )Z abs TX TXµ← ≥ ⊙    (9) 

Here⊙ indicates element-wise product.  

For updating the transform, one can notice that the 
gradients for different terms in (8) are easy to compute. 
Ignoring the constants this is given by –  

( )2

2

log det

T

F

F

T

TX Z X TX Z

T T

T T−

∇ − = −

∇ =

∇ =

 

In the initial paper on transform learning [6], a non-linear 
conjugate gradient based technique was proposed to solve the 
transform update. In the more refined version [18], with some 
linear algebraic tricks they were able to show that a closed 
form update exists for the transform.  

T TXX I LLλε+ =     (10) 

1 T TL XZ USV− =      (11) 

( )2 1/2 10.5 ( 2 ) TT R S S I Q Lλ −= + +    (12) 

The first step is to compute the Cholesky decomposition; 
the decomposition exists since TXX Iλε+ is symmetric 
positive definite. The next step is to compute the full SVD. 
The final step is the update step. One must notice that 1L−  is 
easy to compute since it is a lower triangular matrix.  

The proof for convergence of such an update algorithm 
can be found in [19]. It was found that the transform learning 
was robust to initialization. There are only a few studies 
showing the application of transform learning; in [20] it was 
used for solving the MRI reconstruction problem. 

III.  ROBUST TRANSFORM LEARNING 

The l2-norm minimization works when the deviations are 
small – approximately Normally distributed; but fail when 
there are large outliers. In statistics there is a large body of 
literature on robust estimation. The Huber function [21] has 
been in use for more than half a century in this respect. The 
Huber function is an approximation of the more recent 
absolute distance based measures (l1-norm). Recent studies in 
robust estimation prefer minimizing the l1-norm instead of the 
Huber function [22]-[24]. The l1-norm does not bloat the 
distance between the estimate and the outliers and hence is 
robust.  

The problem with minimizing the l1-norm is 
computational. However, over the years various techniques 
have been developed. The earliest known method is based on 
Simplex [25]; Iterative Reweighted Least Squares [26] used 
to be another simple yet approximate technique. Other 
approaches include descent based method introduced by [27] 
and Maximum Likelihood approach [28].  

The IRLS have been before for solving the robust 
dictionary problem [14, 15]. The issue with IRLS is that, it 
solves a proxy of the actual problem; the convergence is only 
asymptotic. More recent studies on robust dictionary learning 
[16, 17] follow the Split Bregman approach. In this work we 
do the same. 

For robust transform learning the formulation we propose 
is, 

( )2

1 0,
min + log det +

FT Z
TX Z T T Zλ ε µ− −   (13) 
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Here we have abused the notation slightly; the l1-norm is 
defined on the vectorised data. The usage of the l1-norm data 
fidelity term follows from the robust statistics.  

We substitute TX – Z = P in (13). This leads to the 
following constrained problem,  

( )2

1 0, ,
min + log det +

such that 

FT Z P
P T T Z

TX Z P

λ ε µ−

− =
  (14) 

The Lagrangian for (14) is, 

( )
( )

2

1 0, ,
min + log det +

( )

FT Z P
P T T Z

P TX Z

λ ε µ

η

−

+ − −
  (15) 

The Lagrangian enforces equality in every iteration; this 
is not required in practice. One only needs to enforce equality 
at convergence. This can be achieved by the augmented 
Lagrangian, 

( )2

1 0, ,

2

min + log det +

( )

FT Z P

F

P T T Z

P TX Z

λ ε µ

η

−

+ − −
  (16) 

The parameter η controls the equality constraint; a small 
value relaxes the constraint and a high value enforces it. One 
approach to solve the problem is to solve (16) for a small 
value of η and keep on heating (increasing) the value to 
enforce equality at convergence. However, this is not a 
particularly elegant approach. In this work, we follow the 
Split Bregman technique [29, 30]. We introduce a Bregman 
relaxation variable (B) which is updated in every iteration 
thereby automatically enforcing the equality at convergence. 

( )2

1 0, ,

2

min + log det +

( )

FT Z P

F

P T T Z

P TX Z B

λ ε µ

η

−

+ − − −
  (17) 

One can segregate (17) into the alternating minimization 
of the following sub-problems: 

( )2 2
P1:min ( ) logdet

F FT
P TX Z B T T

λ ε
η

− − − + −   (18) 

2

0
P2:min ( ) +

FZ
P TX Z B Z

µ
η

− − −   (19) 

2

1
P3:min ( )

FP
P TX Z B Pη − − − +    (20) 

Solving for the Transform update (P1) follows from [18] 
after some algebraic manipulations.  

( )
1

2 1/2 1

( )

0.5 ( 2 )

T T

T T

T

XX I LL

L X P Z B USV

T R S S I Q L

λε

λ

−

−

+ =
+ − =

= + +

   

 Updating the sparse coefficients Z from P2 is 
straightforward; requires one step of hard-thresholding.  

( ) ( )Z abs TX P B TX P B
µ
η

 ← − + ≥ − + 
 

⊙  

Updating the proxy variable P from P3 is also 
straightforward, requiring one step of soft-thresholding.   

1
( )max 0,P signum TX B Z TX B Z

η
 ← + − + − − 
 

 

The final step is to update B for all the problems. This is done 
by simple gradient descent.  

( )B P TX Z B← − − −  

There are two stopping criteria for the Split Bregman 
algorithm. Iterations continue till the objective function 
converges (to a local minima). The other stopping criterion is 
a limit on the maximum number of iterations. We have kept 
it to be 50. 

IV.  EXPERIMENTAL RESULTS 

We carry out two sets of experiments. In the first set, we 
employ robust transform learning to remove impulse noise 
from images. In the second set, we use robust transform 
learning as a feature extraction technique.   

A. Impulse Noise Removal 

In this work we compare the transform learning method 
with dictionary learning. We compare with the l1-l1 dictionary 
learning formulation for sparse noise removal in [14]. The 
dictionary learning based noise removal algorithm was 
formulated as –  

2

1ˆ 2 1,Z,

ˆ ˆmin i i i
D X i

X X P X Dz zλ− + − +∑   (21) 

The first term is the data fidelity term between the noisy 
image X and the noisy version ̂X . The second term is the data 
fidelity term for dictionary learning; Pi is the operator that 
extracts patches from the image, D is the dictionary and zi the 
sparse codes for the corresponding patch. The algorithm to 
solve it has been given in [14].  

In this work we propose the transform learning version of 
image denoising. This has not been done before. 

2

0ˆ 2 1,Z,

ˆ ˆmin i i i
D X i

X X TP X z zλ− + − +∑   (22) 

The first term is the global consistency term; this accounts for 
the removal of blocking artifacts arising from patch based 
operation. The second term arises from robust Transform 
learning; it is the l1-norm since we are removing sparse noise. 
The solution to (22) can be obtained from alternate 
minimization.  

T 1

ˆP1:min i i
i

TP X z−∑     (23a) 

0Z 1

ˆP2:min i i i
i

TP X z zλ− +∑    (23b) 
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2

ˆ 2 1

ˆ ˆP3:min i i
X i

X X TP X z− + −∑    (23c) 

We have proposed algorithms to solve sub-problems P1 
and P2. Sub-problem P3 is an l1-minimization problem that 
can be solved using Iterative Soft Thresholding Algorithm 
[31].  

We have carried out experiments on the Lena, Barbara 
and Baboon images. All of them were of size 256 x 256. 
These are standard images and we skip further description for 
the sake of brevity.  

   
Fig. 3: Sample Test Images – Lena, Barbara and Baboon 

The denoising results for several proportions of 
corruption (percentage of corrupted pixels) by salt-and-
pepper noise are shown in the following table. The 
performance is measured in terms of structural similarity 
index (SSIM) which is known to be a better correlated with 
visual quality compared to PSNR.  

Table. 1. SSIM Values after Denoising 

Corrupted 
pixels 

Lena Barbara Baboon 
DL TL DL TL DL TL 

10% 0.97 0.98 0.95 0.95 0.96 0.97 
30% 0.86 0.89 0.84 0.88 0.85 9.88 
50% 0.78 0.82 0.77 0.82 0.78 0.83 

*DL – Dictionary Learning [14]; TL – Proposed Transform Learning 

The results clearly indicate that our proposed method 
yields superior results compared to dictionary learning based 
techniques for impulse noise removal. We have found that 
our results are robust to the values of λ between 0.01 and 1.  

B. Feature Extraction 

In [7] transform learning was dubbed as analysis sparse 
coding (ASC). They used it for feature extraction. In this 
work we compare robust transform learning with transform 
learning along with other representation learning tools – 
dictionary learning (K-SVD) [4], autoencoder (AE) and 
restricted Boltzmann machine (RBM). AE and RBM are used 
as basic building blocks for deep neural networks; however 
since transform learning and dictionary learning are shallow 
architectures, it is fair to compare with the basic AE and 
RBM. The results are shown in Tables 2 and 3 for Nearest 
Neighbour (NN) and Support Vector Machine (SVM) with 
rbf kernel.  

We carried our experiments on several benchmark 
handwritten character recognition datasets. The first one is 
MNIST. It has 60K training samples and 10K test samples. 
The next one is USPS having 7291 training and 2007 test 
samples. Both MNIST and USPS are English digit datasets.  

The Devnagari database [32], [33] of isolated handwritten 
Devnagari numerals consists of 22556 samples from 1049 

persons. This database was formed from 368 mail pieces, 274 
job application forms and for the rest we used a specially 
designed form for the present purpose. 

The Bangla database [32], [33] of handwritten isolated 
Bangla numerals consists of 23392 samples written by 1106 
persons. These samples had been collected from 465 mail 
pieces and 268 job application forms and for the rest, we used 
a specially designed form. 

The number of nodes in AE and RBM are half the 
dimensionality of the input samples. The number of basis for 
KSVD, ASC/TL and proposed kernel Transform learning are 
one fourth the dimensionality of the input samples. These 
were found to yield the best results for all the datasets. 

Table. 2. Classification Accuracy from NN 

Dataset AE RBM KSVD ASC/TL Proposed 
MNIST 95.31 94.55 93.39 94.70 96.59 
USPS 94.01 92.77 88.49 92.73 94.02 
Devnagari 89.61 91.57 81.13 92.06 92.14 
Bangla 78.80 87.07 77.60 79.17 85.07 

 

Table. 3. Classification Accuracy from SVM 

Dataset AE RBM KSVD ASC/TL Proposed 
MNIST 96.62 96.50 91.24 94.90 96.12 
USPS 94.77 94.47 90.98 94.08 94.77 
Devnagari 94.52 91.15 89.02 94.58 96.25 
Bangla 90.90 89.37 85.28 91.87 92.32 

 

We see that our proposed robust transform learning yields 
superior results not only to the basic transform learning / 
analysis sparse coding formulation but also compared to 
dictionary learning, RBM and AE on an average. This shows 
that robust transform learning has the potential to be used as 
a feature extraction tool.   

V. CONCLUSION 

Transform learning is an analysis basis learning 
framework. There are only a handful of studies on this 
problem. It has been used for image denoising and 
reconstruction. Under the name of analysis sparse coding, it 
has been used for feature extraction.  

In this work, we propose robust transform learning. In the 
original formulation for transform / analysis sparse coding, 
the data fidelity term is a Euclidean norm. It is well known in 
robust statistics that such a norm is not robust towards outliers 
with heavy tailed distributions. In this work we replace the 
Euclidean norm by the sum of absolute distances. This makes 
our formulation less sensitive to outliers.  

We have carried out experimental results on 1. inverse 
problem of impulse denoising; and 2. Feature extraction tool. 
In both cases we perform better. For impulse denoising it 
outperforms the l1-l1 dictionary learning and for feature 
extraction it yields better results than autoencoder, restricted 
Boltzmann machine, dictionary learning and transform 
learning.   
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