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Abstract— Dictionary learning follows a synthesis
framework; the dictionary is learnt such that the data can be
synthesized / re-generated from the coefficients. @&nsform
learning on the other hand is based on analysis fowlation; it
learns a transform so as to generate the coefficien The basic
formulations of dictionary learning and transform learning
employ a Euclidean cost function for the data fidéty term. Such
cost functions are optimal when the noise / erromithe system is
Normally distributed, but not in the presence of sprse but large
outliers. For such heavy tailed noise distributionsminimizing
the absolute distance is more robust. There are senal papers
on robust dictionary learning. This work introduces robust
transform learning. Experiments carried out on imageanalysis
and impulse denoising elucidate the superiority abur method.

Keywords—  Analysis  Dictionary Learning, Robust
Estimation, Feature Extraction, Denoising
l. INTRODUCTION
O
X =
N 4

Fig. 1: Schematic Diagram for Dictionary Learning

In dictionary learning, we find a basis and leahe t
corresponding coefficients from the training datiels that
the basis / dictionary can synthesize / generagertining
data. It was introduced in late 90’s as an emgirical to
learn filters [1, 2]. The usual understanding oftidinary
learning is shown in Fig. 1. The dictionarp)(and the
coefficients ) are learnt from the data) such that the
learnt dictionary and the coefficients can syntheshe data.
Mathematically this is represented as,

X =DZ 1)

Early studies in dictionary learning focused onéag a
basis for representation. There were no constraintshe
dictionary atoms or on the loading coefficientseThethod
of optimal directions [3] was used to learn theifias

. 2
min|X - Dz (2
Here, X is the training dateD is the dictionary to be learnt
andZ consists of the loading coefficients.
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For problems in sparse representation, the obgdtivo
learn a basis that can represent the samples ipasses
fashion, i.eZ needs to be sparse. K-SVD [4] is the most well-
known technique for solving this problem. Fundara#iynt it
solves a problem of the form:

. 2
ng]anX -DZ|_ such thalZ| <7 ©)
Here we have abused the notation slightly, lgaeorm is
defined on the vectorized version of Z. The probleith K-
SVD is that it is slow, since it requires computthg SVD in
every iterations and updating the coefficientsasitnogonal
matching pursuit. A faster solution to dictionaggining can
be obtained by employing direct optimization meth{f].

Fig. 2 Schematic Diagram for Transform Learning

Transform learning analyses the data by learning a
transform / basis to produce coefficients. Mathécadly this
is expressed as,
TX=2Z 4)

HereT is the transformX is the data and the corresponding
coefficients. One may be enticed to solve the foans
learning problem by formulating,

min[TX - Z|; +4] 2, ®)

Unfortunately such a formulation may lead to thiwiaf
solution T=0 and Z=0. In order to ameliorate this, the
following formulation was proposed in [6] —

min|TX - 77 +2 (17 - tog detT) ] 4, (6)

The factor —log defT imposes a full rank on the learned
transform; this prevents the degenerate solutiohe T
additional penaltyHTHi is to balance scale; without this
—logdefT can keep on increasing producing degenerate

results in the other extreme. Exactly the same @ation
was restated as analysis dictionary learning in [7]
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Dictionary learning has been employed extensively i DHTX—ZHZ = X (TX- 2
F

solving various inverse problems [8-10].
dictionary has gained immense popularity in machis®n
[11-13]. In all these studies, the data fidelitynteis a
Euclidean norm; this is based on the tacit assumpliat the
noise / error is Normally distributed. Even if thatnot the
case, researchers in signal processing and compigien
prefer employing the Euclidean norm owing to thiatree
ease of solution.

In signal processing literature, there have beeadies
where dictionary learning have been employed to/esol
problems that are known to be corrupted by spansdéabge
outliers. It has been used for solving impulse dgng
problems [14, 15]; in recent times robust dictigniaarning
has been used in energy analytics where the sigmals
known to be corrupted by power surges which aresspaut
of large magnitude [16, 17]. Owing to the heavyethi
distribution of such outliers, the aforementioneakis [14-
17] have proposed employing &nanorm for data fidelity
cost.

In this work we propose a robust version of tramsfo
learning. This is achieved by replacing theFrobenius norm
of the data fidelity term in (6) by dir-norm. This makes the
problem slightly difficult to solve. However follang the
Split Bregman technique we propose an efficientitsamnh.
We have carried out experiments on impulse derpism
images and have used it as a tool for feature @idra

The rest of paper is organized in several sectiSirce
there are only a handful of studies in transforariéng, we

Supervised

O =7
OlogdefT =T7"

In the initial paper on transform learning [6], @rlinear
conjugate gradient based technique was proposstie the
transform update. In the more refined version [#8fh some
linear algebraic tricks they were able to show thatosed
form update exists for the transform.

XXT + el = LU (10)
L*XZ" =UsV (11)
T=05R(S+($+21 ) G ! (12)

The first step is to compute the Cholesky decontjpusi
the decomposition exists sinc&XX" +Aglis symmetric
positive definite. The next step is to compute file SVD.
The final step is the update step. One must nétiaeL™ is
easy to compute since it is a lower triangular iRatr

The proof for convergence of such an update algorit
can be found in [19]. It was found that the transféearning
was robust to initialization. There are only a fetudies
showing the application of transform learning; 20] it was
used for solving the MRI reconstruction problem.

I1l. ROBUSTTRANSFORMLEARNING
Thel,-norm minimization works when the deviations are

review it the following section. The proposed rabus small — approximately Normally distributed; butlfainen
transform learning is described in section Ill. Thethere are large outliers. In statistics there large body of
experimental results are shown in section IV. Thejterature on robust estimation. The Huber functidh] has

conclusions of this work are discussed in section V

Il. TRANSFORMLEARNING
We repeat the formulation for transform learningnir
(6).
min|TX - 2 + (&[T} - log detT) ] 4,

In [6, 18], an alternating minimization approachswa
proposed to solve the transform learning probleims Ts
given by —

Z — min|[TX-Z; + 4] 7, Q)

T — min|TX - 7L +/1(£H'Iﬂ§ - log detT) (8)

Updating the coefficients (7) is straightforwartdcén be
updated via one step of Hard Thresholding. Thexjgressed
as,

Z — (abg TRz p)o TX (9)

HereQ® indicates element-wise product.

For updating the transform, one can notice that the

gradients for different terms in (8) are easy tonpate.
Ignoring the constants this is given by —

been in use for more than half a century in thipeet. The
Huber function is an approximation of the more rece
absolute distance based measuresdrm). Recent studies in
robust estimation prefer minimizing thenorm instead of the
Huber function [22]-[24]. Thd;-norm does not bloat the
distance between the estimate and the outliershande is
robust.

The problem with minimizing the l;-norm is
computational. However, over the years various rigples
have been developed. The earliest known methoassdon
Simplex [25]; Iterative Reweighted Least Squares [&ed
to be another simple yet approximate technique.eOth
approaches include descent based method introdiycg¥]
and Maximum Likelihood approach [28].

The IRLS have been before for solving the robust
dictionary problem [14, 15]. The issue with IRLStlgt, it
solves a proxy of the actual problem; the convecges only
asymptotic. More recent studies on robust dictigtearning
[16, 17] follow the Split Bregman approach. In thierk we
do the same.

For robust transform learning the formulation wepwse
is,

min|[TX - 2], +(¢] T} ~log detT) 4| 4, (13)

1468



Here we have abused the notation slightly; itheorm is U
defined on the vectorised data. The usage dfitherm data Z « [ab:{ TX- P+ B2 JO( ™% B B
fidelity term follows from the robust statistics. n

We substituteTX — Z = Pin (13). This leads to the Updating the proxy variableP from P3 is also

following constrained problem, straightforward, requiring one step of soft-thrddimg.
min|P], +/1(5HTHi ~log detT) w2, (14) P  signunf TX+ B- Zmax[ 0] ™% B z-;j

such thafX-Z=P

The Lagrangian for (14) is, The final step is to updaifor all the problems. This is done

by simple gradient descent.

. 2
min|[Pl, +(¢[T[; ~log det) 42, a5 B P(Xx-2-
+7(P-(TX~ 2) There are two stopping criteria for the Split Bregm

i o ) ] algorithm. Iterations continue till the objectiveinttion
The Lagrangian enforces equality in every itergtibis  converges (to a local minima). The other stoppiitgtion is

is not required in practice. One only needs to eefequality  a limit on the maximum number of iterations. We éi&ept
at convergence. This can be achieved by the augahentit to be 50.

Lagrangian,
IV. EXPERIMENTAL RESULTS
. 2
ﬂ'@,HHL +A (‘EHTHF ~log detT) w7, We carry out two sets of experiments. In the e, we
o ) (16) employ robust transform learning to remove impuisése
+7|P-(TX- 2)|. from images. In the second set, we use robust forans

) . learning as a feature extraction technique.
The parameter controls the equality constraint; a small

value relaxes the constraint and a high value eafoit. One  A. Impulse Noise Removal

approach to solve the problem is to solve (16)&@mall In this work we compare the transform learning rodth
value ofn and keep on heating (increasing) the value tqyith dictionary learning. We compare with the dictionary
enforce equality at convergence. However, this a6 @ |earning formulation for sparse noise removal id][IThe

particularly elegant approach. In this work, weldal the  dictionary learning based noise removal algorithrasw
Split Bregman technique [29, 30]. We introduce ad®nan  formulated as —

relaxation variableB) which is updated in every iteration

thereby automatically enforcing the equality atvangence. i HX _ >“<H2 +ZH P X— DZH A H ZH (21)
D.ZX 2 i ! 1 1
. 2
mz'r,alul +"(EHTHF ~log dEtT) WH ZHo The first term is the data fidelity term betweer thoisy
17 A
+n H P-(TX-2)- EH»Z: imageX and the noisy versioX . The second term is the data

fidelity term for dictionary learningP; is the operator that
One can segregate (17) into the alternating mirdtion  extracts patches from the ima@eis the dictionary and the

of the following sub-problems: sparse codes for the corresponding patch. Theitidgoto
p solve it has been given in [14].
Pl:nginHP— X-2)- Eﬂi +*(EH 'mi - log deﬂ') (18) In this work we propose the transform learning iceref
n image denoising. This has not been done before.
L 2 MU . ~ 12 -
P2:min|P~ TX~ 2)- B 7“ 2, (19) !,“Z'QHX - tz +ZHTE>X— ;H1+/1H 4, (22)
PS:”F‘,imHP_ TX-2)- Eﬂi +H Fﬁl (20) 'I;]he first terl]n i? tbhle gkl_obal cqfnsistenc_y_terT; ﬁds;;m;s fodr
the removal of blocking artifacts arising from se
Solving for the Transform update (P1) follows fr¢h8] ~ Operation. The second term arises from robust Toams
after some a|gebraic manipulationsl Iearnlng; I’[_IS thdl-norm since we are remOVIng sparse noise.
The solution to (22) can be obtained from alternate
XXT + el = LU" minimization.
L'X(P+Z-B" = USV Pl:nginZHTPif(— zHl (23a)
T=05R(S+(8+21 )?) @ U i
Updating the sparse coefficientZ from P2 s PZZrQinZ“TF?k_ ZHl A H ZHO (23b)

straightforward; requires one step of hard-thredingl
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pamix- X[+ Ste 4 @30

We have proposed algorithms to solve sub-probleins P

and P2. Sub-problem P3 is haminimization problem that
can be solved using lterative Soft Thresholdingohitihm
[31].

persons. This database was formed from 368 maiepje274
job application forms and for the rest we used ecigily
designed form for the present purpose.

The Bangla database [32], [33] of handwritten imla
Bangla numerals consists of 23392 samples writtehll®6
persons. These samples had been collected frommé&tis
pieces and 268 job application forms and for tisé rge used

We have carried out experiments on the Lena, Barbara specially designed form.

and Baboon images. All of them were of size 25658.2
These are standard images and we skip furtheriggsarfor
the sake of brevity.

~\<‘ \ J.! \ E

Fig. 3: Sample Test Images — Lena, Barbara and Baboon

The denoising results for several
corruption (percentage of corrupted pixels) by -aali-

pepper noise are shown in the following table. The

performance is measured in terms of structural lafity
index (SSIM) which is known to be a better correthtvith
visual quality compared to PSNR.

Table. 1. SSIM Values after Denoising

Corruptec Leng Barbari Babooi
pixels DL TL DL TL DL TL
10% 0.97 | 0.9¢ | 0.9t 0.9t 0.9¢€ | 0.97
30% 0.8€ | 0.8¢ | 0.84 0.8¢ 0.88 | 9.8¢
50% 0.7¢ | 0.8z | 0.77 0.82 0.7¢ | 0.8
*DL — Dictionary Learning [14]; TL — Proposed Trdosm Learning

The results clearly indicate that our proposed ptth
yields superior results compared to dictionaryreay based
techniques for impulse noise removal. We have fotlnad
our results are robust to the values. dletween 0.01 and 1.

B. Feature Extraction

In [7] transform learning was dubbed as analysarsp
coding (ASC). They used it for feature extractidm.this
work we compare robust transform learning with $farm
learning along with other representation learningls —
dictionary learning (K-SVD) [4], autoencoder (AEndc
restricted Boltzmann machine (RBM). AE and RBM ased
as basic building blocks for deep neural netwohyever
since transform learning and dictionary learning sinallow
architectures, it is fair to compare with the baaie and
RBM. The results are shown in Tables 2 and 3 foarhigt
Neighbour (NN) and Support Vector Machine (SVM) hwit
rbf kernel.

proportions of

The number of nodes in AE and RBM are half the
dimensionality of the input samples. The numbdvaxsis for
KSVD, ASC/TL and proposed kernel Transform learrang
one fourth the dimensionality of the input sampl€Ebese
were found to yield the best results for all théadats.

Table. 2. Classification Accuracy from NN

Datase AE RBM KSVD ASC/TL | Propose
MNIST 95.3] 94.5¢ 93.3¢ 94.7( 96.5¢
USP¢ 9401 92.7i 88.4¢ 92.7% 94.0z
Devnagai | 89.61 91.5% 81.1% 9206 92.1¢4
Bangle 78.8( 87.0% 77.6C 79.1% 85.01

Table. 3. Classification Accuracy from SVM
Datase AE RBM KSvVD ASC/TL | Propose
MNIST 96.6: 96.5( 91.2¢ 94.9( 96.1:
USP¢ 94.71 94.47 90.9¢ 94.0¢ 94.77
Devnagai | 94.5: 91.1¢ 89.02 94.5¢ 96.2¢
Bangle 90.9( 89.37 85.2¢ 91.8: 92.3:

We see that our proposed robust transform learigids
superior results not only to the basic transforardeng /
analysis sparse coding formulation but also contpace
dictionary learning, RBM and AE on an average. Biiews
that robust transform learning has the potentiddeéased as
a feature extraction tool.

V. CONCLUSION

Transform learning is an analysis basis learning
framework. There are only a handful of studies bis t
problem. It has been used for image denoising and
reconstruction. Under the name of analysis spasding, it
has been used for feature extraction.

In this work, we propose robust transform learninghe
original formulation for transform / analysis sparsoding,
the data fidelity term is a Euclidean norm. It islvknown in
robust statistics that such a norm is not robwsatds outliers
with heavy tailed distributions. In this work weptace the
Euclidean norm by the sum of absolute distanceis. Mhkes
our formulation less sensitive to outliers.

We have carried out experimental results on 1.rseve
problem of impulse denoising; and 2. Feature etitratool.

We carried our experiments on several benchmark? both cases we perform better. For impulse dempig

handwritten character recognition datasets. Tt &ne is
MNIST. It has 60K training samples and 10K test gkas
The next one is USPS having 7291 training and 2@8%
samples. Both MNIST and USPS are English digitskta

The Devnagari database [32], [33] of isolated haitthm
Devnagari numerals consists of 22556 samples froA9 1

outperforms thel;-1; dictionary learning and for feature
extraction it yields better results than autoencostricted
Boltzmann machine, dictionary learning and transfor
learning.
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