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ABSTRACT

Segmentation is one of the most important low-level tasks in image
processing as it enables many higher level computer vision tasks like
object recognition and tracking. Segmentation can also be exploited
for image compression using recent graph-based algorithms, pro-
vided that the corresponding contours can be represented efficiently.
Transmission of borders is also key to distributed computer vision.
In this paper we propose a new chain code tailored to compress seg-
mentation contours. Based on the widely known 3OT, our algorithm
is able to encode regions avoiding borders it has already coded once
and without the need of any starting point information for each re-
gion. We tested our method against three other state of the art chain
codes over the BSDS500 dataset, and we demonstrated that the pro-
posed chain code achieves the highest compression ratio, resulting
on average in over 27% bit-per-pixel saving.

Index Terms— Superpixel, chain codes, 3OT, compression

1. INTRODUCTION

Image segmentation is the process of partitioning an image into dis-
tinct semantically meaningful regions. It serves as foundation for
many high-level computer vision tasks, such as scene understand-
ing [1] and object recognition [2]. Moreover, if detected region con-
tours in images are compressed efficiently as side information, they
might enable advanced image/video coding approaches based on
shape-adaptive graph transform encoders [3, 4] and motion predic-
tors of arbitrarily shaped pixel-blocks [5]. Lastly, efficiently coded
contours can be used, at a much lower coding cost than compressed
video, in the context of distributed computer vision, to perform com-
putation intensive object detection or activity recognition [6].

To compress borders, chain code techniques are widely used
as they preserve information and bring considerable data reduction.
They also allow various shape features to be evaluated directly from
this representation; edge smoothing and shape comparison are also
easily computed [7]. The ability of chain codes to describe regions
by mean of their border shape is demonstrated to be the most effi-
cient way to deal with this task; in [8, 9] it is shown that algorithms
using chain codes achieve higher compression rate than JBIG [10],
the ISO/IEC standard for compression of bi-level images.

The context of segmentation region borders, however, presents
one characteristic that standard chain codes are not tailored to: since
all image pixels must be assigned to a region, all borders are shared
between two regions. It follows that, if one chain code per border is
used, all edges will be encoded twice, resulting in an higher number
of symbols. Moreover, every chain code needs an edge coordinate,
from where the code sequence is started.

In this work, we propose an algorithm able to produce chain
codes to encode efficiently borders of segmentation regions exploit-
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Fig. 1. A 3×3 image segmented into two regions; the active crack-
edges are outlined in blue.

ing the following properties: 1. every border is visited and encoded
only once; 2. the starting coordinate of the chain code is not needed
as it is known implicitly; 3. the distribution of the chain code sym-
bols is likely to be highly skewed so as to be amenable to efficient
entropy coding.

The paper is organized as follows: in Section 2 we will first
review the state of the art for standard chain codes; then, we will
present our approach in Section 3; lastly, in Section 4 we’ll com-
pare our performance with those of other techniques over a standard
segmentation dataset, to show that our approach is able to achieve
significant gains over classical chain codes.

2. CHAIN CODES

Chain code algorithms encode binary regions by describing their
contours using sequences of symbols from an alphabet. The con-
tour map of a binary input image I is represented by the so called
horizontal and vertical crack-edges. They are the contour line seg-
ments that separate two adjacent pixels: if the pixels belong to two
different regions, the crack-edge is called active; otherwise, if they
belong to the same region, the crack-edge is called inactive. The two
ends of an active crack-edge are called vertices and are denoted as
Pk and Pk+1. Chain code algorithms encode active crack-edges by
virtue of the position of their surrounding vertices. Figure 1 shows
an example of a 3×3 sample image containing two regions: r1 =
{x1,1, x1,2, x2,1, x2,2, x3,1} and r2 = {x1,3, x2,3, x3,2, x3,3}. The
contour map separating the two regions is represented using a ver-
tex vector Γ = [P1P2P3P4P5]. The chain code algorithm translates
the vector of consecutive vertices Γ into a vector of chain code sym-
bols Σ = [S1S2S3S4S5] by encoding a vertex Pk+2 according to
the previous two vertices Pk and Pk+1. It has to be noted that for
the first two vertices P1 and P2, some convention has to be used.
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Fig. 2. Graphical representation of different chain codes

The decoding process then takes Σ and, applying an inverse transla-
tion, computes Γ. It then reconstruct the binary image I by filling
the regions enclosed by the crack-edges in Γ. Since all vertices are
encoded according to their relative position to P1, the absolute po-
sition of the the latter has usually to be provided somehow as side
information to the decoder. Σ is then further compressed with en-
tropy coding techniques, e.g. Huffman, adaptive arithmetic coding,
or context tree coding [11, 12].

2.1. Freeman chain codes (F4 and AF4)

One of the first algorithms developed is the Freeman chain code [13].
In a 4-connectivity context, the algorithm F4 assigns a code from a
4-symbol alphabet {0, 1, 2, 3} to Pk+2 based on its relative position
from Pk+1, according to the scheme presented in Figure 2a.

Since one of the four directions is the one where Pk is, and
Pk+2 6= Pk, we know that just three symbols should be enough
to discriminate the remaining three directions. Differential Freeman
(AF4) [11] uses the scheme illustrated in Figure 2b, where the sym-
bol “0” is used for “go forward”, “1” for “turn left” and “2” for “turn
right” according to the direction of the segment connecting Pk and
Pk+1.

2.2. Three OrThogonal symbol chain code (3OT)

The 3OT algorithm [14] uses a 3-symbol differential approach sim-
ilar to AF4, but exploits one extra information: it keeps track of the
last time that there has been a change in direction. Then, “0” still
means “go forward”, but now “1” means “turn accordingly to the di-
rection you were facing before the previous turn” while “2” means
“turn the opposite way to the one you were facing before the previ-
ous turn”. As can be seen in Figure 2c, when the previous direction is
facing upward, turning upward again is coded as “1”, while turning
downward is coded as “2”; viceversa, when the previous direction
is facing downward, it’s turning upward that is coded as “2”, while
turning downward is coded as “1”.

3OT has been reported as one of the better performing chain
codes in the state of the art [8, 9].

Fig. 3. Image segmented into 150 regions with borders shown in red

3. THE PROPOSED TECHNIQUE

In this section we’ll present an algorithm to encode a segmentation of
an image using a chain code to describe the borders of the segmented
regions. The framework proposed might be used in conjunction with
any standard chain code; in this study we work with 3OT as base
chain code, given its aforementioned qualities. From now on, we’ll
refer to our approach as Segmentation-3OT (S-3OT). S-3OT uses the
same alphabet of 3OT with an added symbol (i.e. “3”), the meaning
of this symbol is going to be explained in detail here.

Let’s start by defining an n regions segmentation of an image
I = {xi}Ni=1 with N pixels as a partition R = {ri}ni=1 of the pixels
of I; more precisely, the segmented regions must satisfy the follow-
ing constraints:

∀x ∈ I, ∃r ∈ R | x ∈ r ;
∀r ∈ R, @r′ ∈ R− {r} | r ∩ r′ 6= ∅ . (1)

For each region ri ∈ R, we call Γi = [P i
k]mk=1 the vector con-

taining all m vertices of the active crack-edges of ri, sorted clock-
wise, starting from a vertex determined accordingly to some conven-
tion. Please note that all crack-edges touching the image border are
considered active and are included in Γi. Also, note that since the
region is closed, P i

m = P i
1 .

In Figure 3 a possible segmentation of a sample image is shown;
given one segmentation, the red borders represent the information
we need to encode in a symbol sequence Σ. From the region borders,
obtained by Σ, the decoder can then assign to each closed region a
different label to reconstruct the segmentation.

One approach might be to encode the whole border grid at once;
chain codes follow a single path along a border and therefore it
would be necessary to keep track of all the crossings that in turn
could require a significant coding overhead. Another approach might
be to encode the borders region by region: to this end, one might
apply a standard chain code to each region border. By doing so,
however, one would encode each crack-edge twice, as each border is
always shared between two regions. A possible countermeasure to
the previous issue is to use some convention to decide which of the
two regions “owns” a specific crack-edge, e.g. all crack-edges are
owned by the left-most or top-most region. Then, when we are en-
coding one region we would skip the crack-edges not owned by that
region; also this approach requires some coding overhead to signal
the offset to jump to the next owned coordinate of the edge. Lastly, to
encode regions by chain codes we need to specify a starting position
in some way.

S-3OT uses a hybrid approach that borrows some ideas from
both the approaches we have just discussed: it proceeds region by
region, but it keeps track of the path it has already covered once,
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Fig. 4. Graphical representation of the chain codes assigned by S-3OT to P i
k+2 according to Rule 2; the crack-edges marked with double red

lines are lying on the known borders.

avoiding to encode it twice. S-3OT has been developed with a few
desired properties in mind:

Property 1. The decoding process should require no information
other than the sequence Σ and the sizes of the image. No offsets or
starting positions are used for each chain code.

Property 2. The decoder will go through Σ in the same order as the
encoder; for this reason, when processing a region, information on
the previously encoded regions is available and should be exploited.

Property 3. The chain code symbols must be selected so as that
their probability distribution is likely to be highly skewed to favor
the following entropy coding.

We’ll proceed here in explaining S-3OT algorithm. S-3OT main-
tains a vector Γ of vertices which have been already encoded. Γ is
initialized with all vertices lying on the image canvas starting from
the top left most vertex of the image and going clockwise around the
image border. Γ is going to be used as “context” during the encoding
to adhere to the aforementioned Property 2. S-3OT also maintains a
setRwhich contains the regions still to be encoded; initiallyR = R.
Then, until R = ∅, the algorithm selects the region ri ∈ R contain-
ing the pixel x in the most top-left position among the regions still in
R; it then encode Γi = [P i

k]mk=1 using the vertex in the top-left cor-
ner of x as P i

1 and then enumerating the vertices clockwise. Using
this convention, no starting point coordinates has to be transmitted
(Property 1). Also, P i

1 and P i
2 don’t need to be encoded, as their po-

sition is always known by the way P i
1 is selected: they will always

lay on the top crack-edge of x. In other words, we are sure that the
left and top crack-edge of x have already been coded, otherwise x
wouldn’t be the selected pixel.

Let’s call π(Γ, [PkPk+1]) a function that, given a vector of ver-
tices Γ and two consecutive vertices Pk and Pk+1, returns the vertex
Pk+2, if [PkPk+1] ∈ Γ. Also, let’s call 3OT ([PkPk+1Pk+2]) the
function that returns the symbol that 3OT returns for the vertex se-
quence [PkPk+1Pk+2].

Then, from Γi, the chain code Σi is constructed according to the
following rules to determine the symbol Si

k+2 ∈ {0, 1, 2, 3} to be
assigned to the vertex P i

k+2, given P i
k and P i

k+1. We’ll call P k+2

the vertex returned by π(Γ, [P i
kP

i
k+1]), i.e. the next vertex on the

known border after P i
k and P i

k+1.

Rule 1 (Follow the border). This rule is applied when we are on a
known border, more precisely when [P i

kP
i
k+1] ∈ Γ ∧ P i

k+2 =

P k+2 .When this condition is met, Si
k+2 = 0. Please note that in

this context “0” is used even if the border is changing direction.

Rule 2 (Leave the border). When leaving the known border, just
two directions have to be discriminated, since out of the four pos-
sible, one is where P i

k is, and the other is where the known border

would continue. Moreover, the symbol “0” can’t be used, as it would
be interpreted according to Rule 1 by the decoder. We’ll then use
symbols “1” and “2” to discriminate between the two possible di-
rections. More precisely when [P i

kP
i
k+1] ∈ Γ ∧ P i

k+2 6= P k+2 ,
S-3OT assigns a symbol according to the following:

Si
k+2 =

{
S3OT
k+2 if S3OT

k+2 6= 0 ,

3OT ([P i
kP

i
k+1P k+2]) otherwise;

(2)

where S3OT
k+2 = 3OT ([P i

kP
i
k+1P

i
k+2]). A graphical representation

of this rule is given in Figure 4. It can be noticed there that when the
known border is proceeding straight (Figure 4a and Figure 4b), the
symbols assigned to the other directions are the same 3OT would
have used. In all other cases, the known border is not straight. In
this cases, if P i

k+2 is straight ahead of P i
k and P i

k+1, we use the
symbol that 3OT would have assigned to the direction occupied by
the known border; instead, the other direction maintains the corre-
sponding 3OT symbol. To give one example, in the case presented
in Figure 4c, if the direction to follow is upward the symbol “1” is
used, which is the one 3OT would have used. “Going downward”
following the known border is encoded as “0”, according to Rule 1.
“Going straight” is encoded as “2”, as it is the symbol 3OT would
have assigned to the direction where the known border is, i.e. down-
ward. In other words, according to this rule, if the direction of the
known border is not straight, the 3OT code for its direction and to
signal to go straight are swapped.

Rule 3 (Not on the border). When P i
k+2 is not on the known border,

i.e. when [P i
kP

i
k+1] /∈ Γ, S-3OT uses the classical 3OT code, then

Si
k+2 = S3OT

k+2 .

Rule 4 (Follow until the end). Lastly, if for any k ∈ [1,m− 3]
it happens that [P i

j ]mj=k ∈ Γ, the symbol “3” is appended to the
chain code, and the encoding of ri ends. This symbol signals to
the decoder that from P i

k+2 onward it just has to follow the known
borders until the starting point is reached again.

After the computation of Σi is terminated, either by going
through all Γi or by the special symbol “3”, Γ is recomputed includ-
ing also all vertices in Γi, ri is removed fromR, and Σi is appended
to the end of Σ. S-3OT then proceeds selecting the next region to be
encoded until R = ∅.

Figure 5 presents a simple example of application of S-3OT. It
can be noted that the sequence produced by S-3OT is considerably
shorter than the ones computed by standard chain codes.

The algorithm just presented produces chain codes which are
strictly shorter than those produced by classical chain codes—which
use exactly one symbol for each vertex. S-3OT does not encode P1

and P2, resulting in one less symbol for each region, then it is also

1464



5

4

3

2

1
1 2 3 4 5

x4,1

x3,1

x2,1

x1,1

x4,2

x3,2

x2,2

x1,2

x4,3

x3,3

x2,3

x1,3

x4,4

x3,4

x2,4

x1,4

→ →

→

F4 = 000322332111 0332221001 000332222101

AF4 = 000220102200 0202002201 000202000221

3OT = 000220101200 0202002201 000202000221

S-3OT = 00220101200 0020023 3

Fig. 5. A 4×4 image segmented into three regions; the active crack-
edges and the starting positions are outlined in the color of the re-
gion. Below the image are the corresponding chain codes.

able to terminate the code with the symbol “3”, gaining possibly
many more symbols.

Note that P i
1 will always be in Γ, if ri is not a completely con-

tained regions, i.e. a region which lies entirely inside another region
without being adjacent to any other third region. This allows S-3OT
to operate without the need of starting coordinates (Property 1). In
the case of a completely contained region, one solution might be to
split the containing region into two regions to be merged again while
decoding. Also, thanks to the way P i

1 is selected we always know
that the last turn was upward and that the first movement will go
right, this allow us to avoid encoding P i

1 and P i
2 .

4. EXPERIMENTAL VALIDATION

To objectively assess the quality of chain codes produced by S-
3OT, we have performed extensive tests over the 500 images in the
BSDS500 dataset [15], which has become the standard for eval-
uating segmentation algorithms. All images in the dataset have
a resolution of 481×321. We have performed three scenarios,
varying the number of segmentation regions: we used the SLIC
algorithm [16] to produce first 30, then 150 and finally 600 regions
for all the 500 images in the dataset. In all scenarios completely
contained regions have been removed. Then, we produced the chain
codes of the segmentation contours using F4, AF4, 3OT and S-3OT.
For our comparative analysis we have run standard chain codes
region by region, using the same convention adopted by S-3OT to
avoid the need for starting coordinates (i.e. always select the top
left most not yet encoded pixel as x); as already discussed standard
chain codes do not exploit the presence of common border between
any two segmented regions.

For performance evaluation we calculated the first order entropy
of each chain code sequence to get an estimate of the coding rate

Table 1. Average results over the BSDS500 dataset

30 regions 150 regions 600 regions

length F4, AF4, 3OT 23020,576 32110,896 49478,628
S-3OT 16316,310 23562,800 37468,274
gain over 3OT 29,12% 26,62% 24,27%

bps F4 1,996 1,998 2,000
AF4 1,550 1,560 1,568
3OT 1,307 1,303 1,305
S-3OT 1,259 1,280 1,330
gain over 3OT 3,66% 1,73% -1,85%

bpp F4 0,298 0,416 0,641
AF4 0,231 0,325 0,502
3OT 0,195 0,271 0,418
S-3OT 0,134 0,196 0,323
gain over 3OT 31,48% 27,79% 22,86%

Table 2. Average symbol frequencies over the BSDS500 dataset

0 1 2 3

F4 0,2553 0,2447 0,2553 0,2447
AF4 0,4182 0,2778 0,3040 -
3OT 0,4182 0,5051 0,0767 -
S-3OT 0,5806 0,3523 0,0555 0,0116

measured in bit per symbol (bps). In Table 1, the average perfor-
mance over the 500 images in the dataset over the three scenarios are
reported in terms of length of the chain code sequence, bit per sym-
bol estimate and image compression rate expressed in bit per pixels
(bpp). In Table 2 the average frequencies of each symbol for each
chain code are reported as well; this table confirms that S-3OT com-
plies well with Property 3. In can be noted that, although the added
symbol to the 3OT alphabet weighs a little bit on the bps scores of
S-3OT, the smaller number of symbols and the higher asymmetry in
the symbol frequencies compensate for that, letting the overall num-
ber of bits (and corresponding compression rate) be the best with
respect to all other techniques with a gain of 31%, 28% and 23%,
for the cases with 30, 150 and 600 regions, respectively. This gain
is clearly explained with the S-3OT capacity to efficiently encode
already known borders, either using symbol “0” or “3”.

As a side note, among the classical chain codes, our tests also
confirm the better performance of 3OT over F4 and AF4. This results
are consistent with those reported in other studies [8, 9].

5. CONCLUSIONS

We proposed a framework to encode image segmentation contours
using a chain code able to exploits the characteristics of the do-
main. The proposed approach produces strictly shorter sequences
than classical chain codes and, although it requires one extra sym-
bol, we demonstrated how it is able to outperform the other chain
codes thanks to its highly skewed symbol frequencies and its shorter
sequence length. We tested our approach on over 1500 images, prov-
ing a bit per pixel gain of over 27% compared with classical 3OT.
Future work might be oriented in finding a proper context-based en-
tropy coding to further compress S-3OT symbol sequence.
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