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ABSTRACT

Since the quality of depth maps produced by Time-of-Flight
(TOF) cameras is low, color-guided recovery methods have
been proposed to increase spatial resolution and suppress un-
wanted noise. Despite successful applications of deep neural
networks in color image super-resolution (SR), their poten-
tial for depth map SR is largely unknown. In this paper, we
present a deep neural network architecture to learn the end-
to-end mapping between low-resolution and high-resolution
depth maps. Furthermore, we introduce a novel color-guided
deep Fully Convolutional Network (FCN) and propose to
jointly learn two nonlinear mapping functions (color-to-depth
and LR-to-HR) in the presence of noise. Experimental re-
sults on several benchmark data sets show that our method
outperforms several existing state-of-the-art depth SR algo-
rithms. Moreover, this work attempts to partially shed some
light onto the fundamental question in color-guided depth
recovery — how much can color help in depth SR?

Index Terms— Depth map super-resolution, colorguided
depth recovery, deep neural network

1. INTRODUCTION

Acquiring high-quality depth maps is a fundamental chal-
lenge for many vision related tasks, such as intelligent ve-
hicles, gesture recognition, and 3D model rendering. In the
past decade several model-based depth map super-resolution
(SR) methods have been developed to improve the quality of
depth maps. Diebel et al. [1] formulated depth map SR as
an optimization problem, and integrated low-resolution depth
maps with high-resolution color images using Markov Ran-
dom Field (MRF). Park et al. [2] introduced non-local means
into MRF to regularize depth maps. They also incorporated
an edge-weighting scheme based on color image to preserve
fine structural details. Ferstl et al. [3] proposed a total gen-
eralized variation model to regularize depth maps through an
anisotropic diffusion tensor obtained from the color image.
Zhou et al. [4] formed a dictionary by finding K-nearest
neighbors (KNN) for each depth patch under the guidance

of its corresponding color image, and iteratively solved a
simultaneous sparse coding problem to refine depth details.
Despite the success of these color guided approaches, the
fundamental question - how much can color help? - largely
remains open.

Recent breakthroughs in deep learning or deep neural
networks have led to state-of-the-art performance in vari-
ous computer vision applications including both low-level
and high-level tasks. Under the context of single image
super-resolution (SR) [5] [6] [7], Dong et al. [8] proposed a
simple end-to-end deep convolutional neural network (CNN)
to learn nonlinear mapping between low-resolution (LR) and
high-resolution (HR) natural images. This work achieved ex-
cellent performance and inspired a deeper CNN architecture
proposed by Kim et al. [9] as well as another deep recursive
neural network [10] for image SR. These methods success-
fully demonstrate that end-to-end nonlinear mapping can be
learned between low-resolution color images and their cor-
responding high-resolution images. However, these network
models cannot be directly applied to depth map SR because
depth maps acquired by TOF cameras have different intrinsic
properties.

In this paper, we propose a novel CNN architecture to
tackle learning-based color-guided depth map SR problem.
For depth maps distorted by noise, denoising and SR are
treated jointly in our problem formulation. The first part of
our network consists of a series of fully convolutional layers
to estimate missing high-frequency and noise components
simultaneously. We call this part of the network “Depth En-
hancement Network” (DEN). The second part of our network
is designed to explicitly exploit the structural correlation be-
tween color images and depth maps. Inspired by [11], which
attempts to predict a depth map from a single color image, we
propose to utilize the HR color image as a prediction network.
This part of the network is called “Color-based Prediction
Network” (CBPN). With two independent and competing
networks, we also address the issue of auto-merging before
the final reconstruction of depth maps. The proposed network
architecture enables us to at least partially shed some light
onto the aforementioned fundamental question.

Under the framework of deep CNN, the amount of reli-
able information (e.g., high-frequency components) in train-
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(a) HR depth edge
0 10 20 30 40 50 60 70 80 90 100

40

60

80

100

120

140

160

180

(b) Corresponding color edge
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(c) Interpolated, noise free
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(d) Interpolated with noise

Fig. 1. Comparison of a typical depth edge with its counter-
parts. High-frequency components in (c) is the most reliable;
including (b) when SR (c) only confuses the network. On the
contrary, including (b) when SR (d) provides relatively more
reliable high-frequency components.

ing images directly impacts the learning outcomes especially
for low-level vision tasks such as SR. To see this, we have
shown a visual comparison of depth-color pair along with the
interpolated depth profiles with and without noise contami-
nation in Fig.1. It can be observed that when noise is absent,
only small amount of high-frequency components are missing
in the interpolated depth map (Fig.1c); therefore the help from
the corresponding color image (Fig.1b) is limited. Moreover,
depth values in the noisy interpolated depth map (Fig.1d) are
only partially preserved - precise locations of depth discon-
tinuities are severely distorted. In this situation, the high-
frequency components contained in the supplementary color
image could be highly useful. Apparently, how much can
color help is question that is difficult to answer in traditional
model-based color guided depth recovery framework; deep
CNN at least suggests an alternative learning-based approach
to joint depth SR and noise suppression.

Our contributions are summarized as follows:

1. We propose to directly learn end-to-end nonlinear map-
ping for the depth map super-resolution problem under
the framework of Convolutional-Neural-Network.

2. By analyzing the characteristics of low-resolution
depth maps and color images, we observe that color
images are more helpful when noise is present and/or
the scale factor is large.

3. We propose a color-based prediction network for the
learning processes that need color guidance. The com-

bined network leverages the contribution from depth
maps and color images automatically to finalize the
nonlinear model.

2. DEPTH SUPER-RESOLUTION NETWORK

The goal of our proposed network is to learn a nonlinear map-
ping that describes the relationship between LR and HR depth
maps. Our network consists of four components. The first
component is a depth enhancement network (DEN), which
estimates the missing high-frequency components from the
LR depth map. The importance of estimating missing high-
frequency components has been discussed in [9] and [12].
The second component is a color-based prediction network
(CBPN), which predicts the high-frequency components for
the HR depth map. The third component is an auto-merging
part, in which feature maps produced by DEN and CBPN are
automatically combined into a set of new feature maps. The
last component of our network reconstructs the HR depth map
from the merged feature maps. Note that CBPN and auto-
merging become more important when the LR depth map be-
comes less reliable (e.g., due to presence of noise). A graphi-
cal illustration of the proposed network is shown in Fig. 2.

Formally, depth SR is formulated as a problem of estimat-
ing a HR depth mapDHR ∈ RsM×sN from its LR counterpart
DLR ∈ RM×N . Scaling factors s of 2, 4, or 8 were commonly
used in previous studies. Instead of supplying DLR directly
as the network input, we pre-process it with bicubic interpo-
lation to reach the target resolution Dbic ∈ RsM×sN . Such a
step of preprocessing dramatically reduces the computational
burden for network training and helps relax the constraint on
the input size. When DLR is unreliable, we transform the
RGB color image to a YCrCb image and only feed the Y
channel YHR into the network. The final objective of network
learning is to find a set of optimal parameters Θ = {W,B}
such that the following loss function

L(Θ) =
1

2n

n∑
i=1

‖f(Θ, Di
bic, Y

i
HR)−Di

HR‖22, (1)

is minimized, where f(·) estimate the HR depth map based
on W, B, i.e., weights and biases, and n is the total number
of the training samples.

2.1. Depth Enhancement Network
Deep CNN is one of the most commonly used architectures
in the literature of deep learning. It has shown state-of-the-art
performance in various vision tasks including image SR. In
Fig.2 we have shown the construction of our own DEN us-
ing 10 convolutional layers along with a rectified linear unit
(ReLU)[13] after each layer. We opt to keep our network as
a 10-layer network for the purpose of balancing output ac-
curacy and training resources. It is worth noting that more
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Fig. 2. Network illustrations. LR depth map and HR color image are the inputs of DEN and CBPN. Auto-merging takes the
outputs of these networks to estimate the missing high-frequency component and the noise. The final output of this network is
the reconstructed HR depth map.

convolutional layers can be used to boost performance, at the
price of increased computational complexity.

For each convolutional layer, we use an array of 3 × 3
kernels to generate 64 feature maps. We then pass the fea-
ture maps through the ReLU activation function. In order
to keep the feature maps the same size as the inputs, zero-
padding is employed at each layer. Therefore, each pixel in
the feature maps generated by the 10th layer has a receptive
field of 21 × 21 pixels in the input depth map. After the
network construction, bicubic-interpolated and ground-truth
depth maps are used as inputs and outputs to train the nonlin-
ear mapping. Note that in DEN, only high-frequency compo-
nents are learned from the LR depth map because the bicubic-
interpolated depth map will be fed forward to the final recon-
struction step, as shown in Fig.2.

2.2. Color-based Prediction Network
By comparing edges in Fig.1b with Fig.1d, we can use the
differences between them complementarily. Depth values in
Fig.1d are much more reliable than blind guesses from a color
image. On the other hand, edge locations in Fig.1b are rela-
tively more reliable than the corrupted depth edge. Such mu-
tual complementary characteristics certainly can enhance ac-
curacy and sharpness around depth edges.

Inspired by [11], we utilize color images to predict the
locations of depth discontinuities. To fairly evaluate the con-
tribution of color images, we employ a network structure that
is identical to DEN. As shown in Fig.2, the only difference be-
tween CBPN and DEN is the input. During the experiments
in Sec.3, YHR is chosen as the input to CBPN to eliminate
the effect of color variation. A set of 64-feature maps is gen-
erated for YHR, which contains the predicted high-frequency
content. Note that the feature maps have the same spatial size
as YHR and Dbic. This allows for an easy auto-merging pro-
cess to fuse the feature maps.

2.3. Auto-merging and reconstruction
Instead of designing a switching network that selects from
two sets of feature maps (DEN and CBPN), we argue that it
is better to allow the network to learn an automatic merging
scheme. As shown in Fig.2, we concatenate the feature maps
generated by DEN and CBPN into a new set of 128-feature
maps. One convolutional layer is applied with filter size of
3× 3 to merge the feature maps. The number of feature maps
after this layer is reduced by half.

The last component in our network is to reconstruct the
HR depth map from concatenated feature maps. One convo-
lutional layer is employed to project feature maps onto the
depth domain and generate the final depth map. Dbic is then
added with this depth image to finalize the result. By adding
Dbic and minimizing the loss function Eqn.(1), we explicitly
force the network to learn the missing high-frequency com-
ponents and suppress the unwanted noise.

2.4. Training
During the training process, we learn nonlinear mapping us-
ing stochastic gradient decent [15] with momentum set to 0.9.
We randomly initialize the weights and train the model from
scratch. The learning rate is set to be 0.01 and reduces to 1e−3

after 20 epochs. Gradient clipping is especially required for
CBPN to avoid gradient explosion during back-propagation.
Finally, to ensure low-sparsity constraint on the filters, we pe-
nalize all weights with an `2 penalty. Thus the total loss func-
tion becomes

L =
1

2n

n∑
i=1

‖f(Θ, Di
bic, Y

i
HR)−Di

HR‖22 +

T∑
t=1

λ‖wt‖2, (2)

where T is the total number of filters and the regularization
parameter λ is 1e−4.
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W/O Noise W/ Noise
Art Books Moebius Art Books Moebius

×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8
Bicubic 6.62 14.80 30.45 1.02 2.43 5.06 0.82 1.90 4.16 30.18 38.52 54.19 24.69 26.43 28.79 24.38 25.71 27.80
Park[2] 8.03 12.24 17.42 1.43 2.24 3.91 1.13 1.82 3.25 14.13 20.83 35.10 3.79 6.80 10.97 3.82 6.29 10.34
Ferstl[3] 9.19 14.33 22.92 1.66 2.57 3.97 1.28 2.13 3.66 10.16 16.50 25.84 2.38 4.90 6.08 2.17 4.12 6.65
Diebel[1] 9.73 13.40 30.28 1.45 2.39 4.88 1.41 2.07 4.22 12.17 20.37 40.84 4.26 9.01 16.43 4.52 9.64 17.43
Yang[14] 16.53 16.45 22.21 2.60 2.90 3.80 1.14 1.92 3.31 9.03 16.17 24.89 3.51 5.68 8.30 3.67 5.85 8.87
DEN 0.57 3.68 16.92 0.20 0.75 1.83 0.15 0.66 1.82 4.13 10.22 28.45 1.38 3.30 7.15 1.56 3.63 7.73
DEN +
CBPN

0.58 4.15 12.94 0.22 1.12 1.88 0.15 0.68 1.65 4.13 9.44 23.31 1.42 3.26 7.05 1.43 3.25 6.71

Table 1. Quantitative evaluation. We compare DEN and DEN + CBPN with several state-of-the-art methods. The mean-square-
error (MSE) results on Middlebury data sets are compared. The best result is bolded and the second best is underlined.

3. EXPERIMENT

We evaluate the performance of the proposed network on
widely-used Middlebury Stereo data sets [16] [17] [18].
Thirty-five subjects are obtained from the Middlebury 2001
- 2006 data sets and 32 of them are used as the training
set. There are two depth maps provided for each subject
along with their corresponding color images. We extract sub-
images with size 44 × 44 from these 64 depth maps. Data
augmentation (e.g., flip and rotate) is used to expand our
training set. To test the performance of our method, trained
nonlinear mapping is applied to three test images: Art, Books,
and Moebius.

3.1. Benchmark Comparison

First, we present a quantitative evaluation of the proposed
method. In Table.1, nonlinear mapping learned by DEN and
DEN+CBPN are compared with several state-of-the-art meth-
ods [2] [1] [3] [14]. SR factors of×2,×4, and×8 are consid-
ered, and mean-square-error (MSE) is adopted as the perfor-
mance metric. We set up two experiments to demonstrate the
ability of our proposed method. Noise-free LR depth maps
are generated by down-sampling the HR depth maps with
bicubic interpolation, and noisy LR depth maps are created
by adding Gaussian noise after down-sampling.

To demonstrate the strength of deep neural networks, we
train the nonlinear mapping solely with DEN. The SR depth
maps generated by DEN are compared with aforementioned
depth SR methods. Note that all compared methods are color-
guided and that ours is the only learning-based approach. We
can easily observe that DEN outperforms previous methods
by a large margin when the LR depth maps are noise-free.
This implies that the nonlinear mapping learned by DEN is
capable of restoring most of the missing high-frequency com-
ponents accurately. In the scenario that LR depth maps are
corrupted by noise, DEN still outperforms [2] [1] [14] when
SR factors are ×2 and ×4, and achieves the state-of-the-art
performance when SR factor is ×8.

3.2. How much can color help?
Second, we evaluate the performance of color-guided neural
network, i.e., DEN + CBPN. We mainly compare the per-
formance between DEN and DEN + CBPN to illustrate the
benefits of including color images in depth map SR1. We note
that when training DEN + CBPN jointly, parameters learned
in DEN are not completely equivalent to those learned in solo
DEN. This is mainly due to the fact that two networks can
cooperate with each other to achieve optimal accuracy.

For smaller SR factors, ×2 and ×4, including color im-
age contributes effects benefit when LR depth maps are noise-
free. This is consistent with our analysis on Fig.1. When the
interference from noise is absent, color images are relatively
unreliable. As a result, including color images at these sce-
narios only“confuses” the network and reduces the learning
accuracy of the network. For larger SR factors, ×8, depth
edges are significantly distorted. Thus, depth edges predicted
by color images are more reliable, leading to a superior per-
formance. Similar observations can be made when LR depth
maps are corrupted with noise. When the depth edges become
unreliable, our network tends to rely on CBPN for restoring
more accurate depth edges. Therefore, contribution of color
image increases when the reliability of the LR depth map de-
creases (e.g., as noise gets stronger).

4. CONCLUSION

In this paper, we have taken a learning-based approach for
color-guided depth map super-resolution. We adopt the pop-
ular deep CNN to learn non-linear mapping between LR and
HR depth maps. Furthermore, a novel color-based predic-
tion network is proposed to properly exploit supplementary
color information in addition to the depth enhancement net-
work. In our experiments, we have shown that deep neural
network based approach is superior to several existing state-
of-the-art methods. Further comparisons are reported to con-
firm our analysis that the contributions of color image vary
significantly depending on the reliability of LR depth maps.

1Please refer to our supplemental material for visual comparison.
https://anvoy.github.io/publication.html
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