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ABSTRACT
In this paper, we address the problem of generating a super-
resolution image based on a dictionary of low- and high-
resolution exemplars from a single input image in wavelet
domain with a overall enhancement procedure. Most meth-
ods extract different kinds of features in low-resolution image
and high-resolution images to establish the mapping relation.
But in this paper, we implement wavelet-transform to extract
the same kind of feature to make the mapping more reason-
able. Meanwhile we implement local Lipschitz regularity
constraint and structure-keeping constraint to preserve the
local singularity and edge in our method. Compared with
current state-of-art methods on standard images, our method
obtains both visual and PSNR improvement.

Index Terms— Image super-resolution, wavelet domain,
Lipschitz regularization, structure-keeping

1. INTRODUCTION

Single image super-resolution(SR) aims at generating a high-
resolution(HR) image from a low-resolution(LR) image. The
core part of the SR methods is to maintain the high frequency
infomation of the edge area of the image to make the recon-
structed image sharper visually and better in performance.
Currently SR methods can be roughly subdivided into three
categories. Interpolation-based methods use the linear com-
bination of nearby known pixels to obtain the unknown pix-
els like bicubic interpolation, or non-linear interpolation like
NEDI(new edge directed interpolation) [1]. Reconstruction-
based methods map the LR images to HR images using the
known prior. Neighbor embedding method in [2] that im-
plements the prior that the manifolds of LR and HR images
are locally in similar geometries and LR/HR images can be
linearly combined by the LR/HR neighbors. Learning-based
methods use machine learning techniques that try to learn the
mapping function or some relation between the LR images
and HR images. Edge statistics are learned in [3] from natural
images as gradient profile prior. A deep convolutional neural
network is implemented in [4] to learn an end-to-end map-
ping between the LR and HR images. Sparse representation
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based methods [5] learned coupled LR and HR dictionaries
to represent the mapping function based on sparse signal rep-
resentation prior. K-SVD/OMP is implemented in the sparse
representation process which obtained lower computational
complexity and improved quality in [6]. The sparse repre-
sentation methods and neighborhood embedding methods are
combined in [7, 8]. Timofte et al[7] find the neighbors in the
sparse representation dictionaries to represent LR/HR images
and use Ridge Regression [9] to reformulate the problem as a
least squares regression. Timofte et al [8] use the sparse rep-
resentation dictionaries to find neighbors in the training data
instead to represent the LR/HR images.

Currently, most SR methods [5, 6, 7, 8] used the first-
and second- order gradients of patches as the features for LR
images and subtracted the bicubically interpolated LR image
from the HR image to create the features for HR images. We
can see that the features for LR/HR images extracted from
different ways so that we can’t guarantee the structures of
these features in high-dimensional manifold matching well.
To solve this problem, we implement the wavelet transform
to extract the high-frequency components both in LR and HR
image.

Many single image SR methods [5, 6, 10, 11] implement
back projection fidelity term to improve the initial results that
are obtained from their raw methods. Wang et al[12] and
Dong et al [13] implement nonlocal self-similarity which is
proved indeed existing in natural images [14] to regularize
the optimization problem in SR. Besides the back projection
fidelity term and nonlocal self-similarity constraint term, in
this paper we implement local Lipschitz regularity constraint
and structure-keeping constraint to preserve the local singu-
larity and edge in our method. We combine these four terms to
an overall enhancement procedure that significantly improves
the result compared with other SR methods in edge-full im-
ages.

In the following sections, we will first present the model
of our proposed metthod in Section 2. Then we explain details
of our proposed method in Section 3, and describe our experi-
ments in Section 4 where we compare the performance of our
method to other state-of-art methods. Finally in Section 5 we
conclude the paper.
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2. MODEL OF WAVELET-BASED SINGLE IMAGE
SR METHODS

Our proposed method builds on theories from learning-based
super-resolution methods. So in this section we briefly
present the model of our method. And the training and
testing phases is shown in 1.

Fig. 1. Training Phase of our method

Firstly our method collects patches from the 91 training
images[5] in 4 wavelet domains. Then it uses a sparsity con-
straint to jointly train the LR/HR dictionaries to represent the
LR/HR patches[6] in each wavelet domians.

Then we use the local neighborhood samples Sl of each
LR dictionary atom in each wavelet domain to represent
patches with Ridge Regression. Formulated below:

min
α
‖Slα− pl‖22 + λ‖α‖2 (1)

where Sl contains the K training samples that lie closest to
the dictionary atom to which the input patch pl is matched,
andK is a constant we need to set. The distance measure used
for neighbor search in out method is the Euclidean distance.

After we get the reconstruction coefficient α, we use cor-
responding HR neighbor samples Sh and then reconstruct the
initial HR image patch in wavelet domain. Then we aver-
agely add these overlapping HR patches and implement in-
verse wavelet transform to get a initial HR image.

Then we implement back-projection fidelity term with
Lipschitz regularity constraint, structure-keeping constraint
and nonlocal self-similarity constraint to enhance the result.

3. MORE DETAILS OF PROPOSED METHOD

In this section, we present the details of the training phase and
the ehancement phase.

3.1. Training

Currently many methods [5, 6, 7, 8] used the first- and second-
order gradients of patches as the feature for LR images. But

we notice that all these features are limited. These features
can not represent the whole high frequencies details. Mean-
while wavelet transform is a perfect way to extract the whole
local high frequencies details and our experimental results
will illustrate it. We implement discrete wavelet transform
to the training LR/HR images and we can get four wavelet
domains(LL,LH,HL,HH) LR/HR images, then collect over-
lapping patches from them. Sparse dictionaries are learned
independently in each wavelet domain for LR/HR images.
Specifically we use K-SVD for the LR dictionaries in each
wavelet domain and pseudo-inverse for the HR dictionaries
in each wavelet domain, just like [6].

3.2. Enhancement

3.2.1. Lipschitz regularization

The local maxima of wavelet transform modulus capture the
sharp variation pixels of an image and their evolution across
scales characterizes the local Lipschitz regularity of the im-
age. For example, left part of Fig.2 shows a two-dimensional
image and its wavelet transform at several scales. And right
part of Fig.2 shows the propagatation of extrema points across
the scales in the 10th column of the image.

Fig. 2. Left: Pseudocolor image of Baby and its LH compo-
nents of 2-D wavelet transform in three scales. Right: Prop-
agation of extrema points across the scales for 2-D waveform
in the 10th column of the image Baby

The singularities in the signal induce peaks in the wavelet
transform propagate across scales, and the values of the
peaks corresponding to the same singularity change across
the scales according to an exponential function. In particular,
a function f is uniformly Lipschitz α (defined in [15]) over
an interval (a, b) if and only if there exists a constant K > 0
such that for all x ∈ (a, b), the wavelet transform of f(x)
satisfies

|Wsf(x)| <= Ksα (2)

The wavelet transform of f at scale s and position x, de-
noted by Wsf(x). If f(x) is differentiable but not continu-
ously differentiable at x0, then it is Lipschitz α = 1 at x0 and
the corresponding wavelet transform maxima behave as O(s)
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around x0. If f is discontinuous but bounded in the neighbor-
hood of x0, then α = 0 at x0, and the corresponding maxima
remain constant across the scales. And for Dirac function,
α = −1 at x0 and the corresponding wavelet transform max-
ima behave as O(1/s) around x0.

For the local extremum in the wavelet domain of signals,
we can rewrite (Equation2) in discrete formulation

W2jf [x
(j)
m ] = Km(2j)αm , j = 1, . . . , J, (3)

where x(j)m is the location of the local extremum at scale 2j

corresponding to the mth extremum, αm is the Lipschitz reg-
ularity of f at the extremum point, and Km is a nonzero con-
stant. Then a LR image can be treated as a smoothed HR
image. An unknown scaling filter is implemented on a HR
image to generate the corresponding LR image. Then we de-
note LR image at scale 21 and the HR image that we want
to be restored at scale 20. Then we can extrapolate every ex-
tremum point in the wavelet domain of HR image by scaling
the LR image J − 1 times, the parameters αm and Km in
(Equation3) can be estimated via linear regression on

log2(W2jf [x
(j)
m ]) = log2(Km) + jαm, j = 1, . . . , J, (4)

and all the extremum points in HR image denoted by E0 can
be estimated by E0 =W20f [x

(0)
m ] = Km.

For the image that we want to enhance, we implement a
2-D discrete wavelet transform to the LR image. By scal-
ing the LR image several times, we can obtain the extremum
points in the wavelet domain of the HR images that we want
to reconstruct. We expect

min
X
‖E(X)− E0‖22, (5)

to be small, where E() is the operation to obtain the all ex-
tremum points in wavelet domain of current HR image. As
the E() operation is an unlinear operation, it can not be for-
mulated into a matrix form. Instead, we change the loss func-
tion in (Equation5) to

min
X
‖X − IWA(E0 + Er)‖22, (6)

where X stands for the current HR image, and IWA is a in-
verse wavelet transform, E0 is the extremum points that we
obtained from the corresponding LR image before and Er is
the other part of the wavelet domain of HR image X . More
details can be found in [15]. Then we can implement an itera-
tive gradient desent method to solove this regularization term
as below.

Xt+1 = Xt − ρ(Xt − IWA(E0 + Ert )), (7)

where Xt is the estimate of the reconstruction result after tth

iteration, ρ is the step of the gradient descent.

3.2.2. Structure-Keeping Constraint

Normally, a LR image preserves the structure of the corre-
sponding HR image quite well. Regular super resolution
methods like interpolation usually blur the structure. To en-
hance the structures in our reconstruction results, we can
use a roughly structure regularization to constrain our re-
construction results. Xu et al [16] proposed a relative total
variation(RTV) to extract meaningful structures under com-
plicate texture patterns. The relative total variation is

RTV = Dx(pi)/(Lx(pi) + ε) +Dy(pi)/(Ly(pi) + ε), (8)

where Dx/y(pi) stands for the windowed total variation in
x/y direction in the pixel pi, Lx/y(pi) stands for the win-
dowed inherent variation in x/y direction in the pixel pi, and
ε is a small positive number to avoid division by zero. more
details in [16].

In an image, pixels with textures and strutures yield large
D. But pixels with only textures are generally smaller than
the pixels with textures and structures on the measure of L. It
is shown that relative total variation(RTV) is simple and yet
effective to make main strutures in an image stand out, which
means that it can sharpen the structures area in a blurred im-
age.

To preserve this structure in a reconstructed HR image,
we add a structure-keeping term minX ‖X −Xs‖ to our loss
function, where Xs is the structure image of the X obtained
from [16].

3.2.3. Enhancement procedure

Above all, the whole enhancement procedure is formulated as
below

X∗ =min
X
‖SHX − Y ‖22 + a‖(I −W )X‖22

+ b‖X − IWA(E0 + Er)‖22 + c‖X −Xs‖22.
(9)

The first term denotes the back-projection fidelity term, Y
denotes the corresponding LR image, S denotes a down-
sampling operator and H denotes a blurring filter. The sec-
ond term denotes the nonlocal self-similarity regularization,
W denotes nonlocal means similar weight matrix defined
in [13] and I denotes identity matrix. The third term de-
notes the Lipschitz regularization, the fourth term denotes the
structure-keeping constraint. Meanwhile a, b, c denote the
regularization parameters. The solution to (Equation9) can
be efficiently computed based on iterative optimization, as in
Yang et al [5] and used in the back-projection, as formulated
below.

Xt+1 = Xt + νHTST (Y − SHXt)− a(I −W )T (I −W )Xt

− b(Xt − IWA(E0 + Ert )) + c(Xs
t −Xt)

(10)
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(a) Bicubic (b) ScSR[5] (c) ANR[7] (d) A+[8] (e) CSC[10] (f) Proposed (g) Ground truth

Fig. 3. Results by 3× onButterfly image. The red box with its corresponding magnification on the left-bottom of each images
shows the details

4. EXPERIMENTAL RESULTS

In this section, we analyze the performance of our method via
the reconstruction precision quantity and visual quality com-
pared with other state-of-art methods: SCSR by Yang et al
[5], ANR by Timofe et al [7], A+ by Timofe et al [8], CSC by
Gu et al [10]. We use Set5 that contains 5 images provided in
[17] and Set14 that contains 14 images provided in [6] as test
images. In our experiments, the patch size is 9×9. We extract
patches from bicubically interpolated LR in wavelet domains
to generate LR patches. Meanwhile we extract patches from
these HR images in wavelet domains. We use 1024 dictionar-
ies and neighborhood size is 2048. We set ν to 1.8, a to 0.09,
b to 1, c to 0.025.

Table. 1 shows PSNR(Peak signal-to-noise ratio) com-
paration and table.2 shows SSIM(Structural SIMilarity) com-
paration, meanwhile examples are shown in Fig. 3. We can
see that our proposed method outperforms the state-of-arts in
these 19 testing images, and its PSNR is in average 0.15dB
higher than CSC[10], which is the best among the other meth-
ods. Specifically. in Fig. 3, we can see that our proposed
method can preserve edges better than the other state-of-art
methods in visual quality. And Table.2 also illustrates the ef-
fectiveness of our method.

5. CONCLUSION

In this paper, we proposed a new wavelet-based single im-
age super-resolution method. Our contributions are: We ex-
tract high-frequency components separately in four wavelet
domains for both LR/HR images, which guarantee the fea-
tures for LR/HR images forming the same structure in the
high-dimensional manifold; We constraint the enhancement
with local Lipschitz regularity, which is bonus for us to ex-
tract the features in wavelet domains; And we also constraint
the enhancement with structure image, which can preserve
the edge quite well. With above all, our proposed method
achieves better results in both reconstruction precision and
visual quality.

However our proposed method is not that fast as other
state-of-art methods because regularizing with nonlocal self-
similarity and structure images significantly increases the
complexity of our proposed method. The major of our future
investigation is to reduce the computing complexity.

Table 1. PSNR results on image super-resolution with other
methods in Set5 and Set14 (scaling factor = 3)

Images Bicubic ScSR[5] ANR[7] A+[8] CSC[10] Proposed
Baby 33.9 34.3 35.1 35.2 35.3 35.3
Bird 32.6 34.1 34.6 35.5 35.8 35.6
Butterfly 24.0 25.6 25.9 27.2 27.1 28.2
Head 32.9 33.2 33.6 33.8 33.8 33.8
Woman 28.6 29.9 30.3 31.2 31.2 31.5
Baboon 23.2 23.5 23.6 23.6 23.6 23.6
Barbara 26.2 26.4 26.7 26.5 26.7 26.4
Bridge 24.4 24.8 25.0 25.2 25.2 25.3
Coastguard 26.6 27.0 27.1 27.3 27.3 27.3
Comic 23.1 23.9 24.0 24.4 24.4 24.6
Face 32.8 33.1 33.6 33.8 33.8 33.7
Flowers 27.2 28.2 28.5 29.0 29.0 29.2
Foreman 31.2 32.0 33.2 34.3 34.2 34.4
Lenna 31.7 32.6 33.1 33.5 33.6 33.7
Man 27.0 27.8 27.9 28.3 28.3 28.4
Monarch 29.4 30.7 31.1 32.1 32.1 32.9
Pepper 32.4 33.3 33.8 34.7 34.7 34.5
Ppt3 23.7 25.0 25.0 26.1 25.9 26.2
Zebra 26.6 28.0 28.4 29.0 29.2 29.3
Average 28.29 29.13 29.5 30.04 30.06 30.21

Table 2. SSIM results on image super-resolution with other
methods in Set5 and Set14 (scaling factor = 3)

Images Bicubic ScSR[5] ANR[7] A+[8] CSC[10] Proposed
Baby 0.9039 0.9046 0.9225 0.9233 0.9245 0.9239
Bird 0.9256 0.9398 0.949 0.956 0.958 0.9562
Butterfly 0.8215 0.8622 0.872 0.9091 0.9064 0.9188
Head 0.8007 0.8036 0.8249 0.8281 0.8298 0.8264
Woman 0.8896 0.9044 0.917 0.9288 0.929 0.9291
Baboon 0.5439 0.5879 0.5991 0.6064 0.6092 0.6059
Barbara 0.7531 0.7633 0.7811 0.7795 0.7855 0.7741
Bridge 0.6483 0.6688 0.676 0.684 0.7139 0.7112
Coastguard 0.6147 0.6392 0.6575 0.6621 0.6626 0.6631
Comic 0.699 0.7571 0.7617 0.7798 0.7805 0.7909
Face 0.7984 0.8012 0.8234 0.8271 0.8283 0.8257
Flowers 0.8013 0.8301 0.8405 0.8524 0.8538 0.8533
Foreman 0.906 0.9133 0.9302 0.94 0.9405 0.9418
Lenna 0.8582 0.865 0.8805 0.8851 0.8864 0.8848
Man 0.7495 0.776 0.79 0.8 0.8021 0.8011
Monarch 0.9198 0.9292 0.9377 0.9471 0.947 0.9503
Pepper 0.8698 0.8676 0.8856 0.8921 0.8923 0.8907
Ppt3 0.8746 0.906 0.9127 0.9378 0.9305 0.94
Zebra 0.7943 0.8298 0.8449 0.8508 0.8531 0.8528
Average 0.7985 0.8184 0.8319 0.8416 0.8439 0.8442
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