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ABSTRACT

The bilateral filter (BF) is a prominent tool for adaptive, structure-
preserving image filtering. It can be interpreted as a graph-based
filter, where the nodes of the graph correspond to image pixels and
link weights correspond to filter coefficients. Graphs associated to
BFs of typical sizes used in practice are very dense. In this paper,
we propose an efficient method for constructing a sparse graph for
adaptive filtering of an image. The Laplacian matrix of the proposed
sparse graph approximates the inverse of a dense BF kernel matrix.
This is analogous to the idea of finding a sparse inverse covariance of
a Gaussian Markov random field (GMRF) with a dense covariance
matrix. The eigenvectors of the proposed graph Laplacian are ap-
proximately equal to the eigenvectors of the BF graph and allow for
low frequency representation of the image similar to the BF eigen-
vectors. Filters in the form of polynomials of this sparse Laplacian
offer a more flexible and less computationally complex alternative to
a dense BF, with similar performance.

Index Terms— Bilateral filter, Graph signal processing, Sparse
graph construction, Gaussian Markov random field

1. INTRODUCTION

Natural images have complex structure due to the presence of tex-
tures and of edges with different orientations. Filtering such images
with fixed non-adaptive filters tends to blur these details as it in-
volves averaging of pixels across discontinuities. In order to account
for the complexities in natural images, modern filtering and repre-
sentation methods use image adaptive processing. Examples of such
filters include the bilateral filter (BF) [1], anisotropic diffusion, non-
local means [2] or kernel regression [3]. Adaptively designed bases
also allow more compact representation of images. Graph signal
processing (GSP) [4] offers a principled framework for adaptive im-
age processing. In the GSP formulation, an image is represented as a
graph, where the nodes correspond to pixels and links connecting the
nodes capture the similarities between pixels. The Laplacian matrix
associated with the graph can then be used to design structure pre-
serving filters [3, 5]. The so-called graph Fourier transform (GFT),
defined using the eigenvectors of the Laplacian, allows for compact
representation in which most of the signal energy is captured in the
low-frequency GFT coefficients [6, 7].

In this paper, we focus on the bilateral filter, which is a promi-
nent tool for adaptive image processing, widely used in different ap-
plications such as denoising, edge preserving multiscale decomposi-
tion, segmentation etc. [8, 9]. The BF can be interpreted as a filter
on a graph in which the similarity weights associated with links are
given by the filter coefficients [5]. The GFT defined using this BF
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graph also allows for compact low frequency representation of the
image. The BF can be expressed as a low pass filter in this GFT
domain. In the graph associated with the k × k BF, each node is
connected to k2 neighbors. For large values of k (k = 5, 7, 9 are
commonly used), such a graph is very dense. Computational com-
plexity of a single application of BF is roughly O(mnk2), where
m × n is the image size. Using such dense BF graph to apply ad-
ditional GSP tools (such as graph wavelets [6] or graph based reg-
ularization [5, 10]) for adaptive image processing can be even more
computationally complex.

Motivated by this, we consider the following question: Is it pos-
sible to give a dense BF graph a sparse graph representation that
has similar eigenstructure and offers similar filtering performance,
but with lower complexity? We propose to construct such a sparse
graph by approximating the inverse of the BF kernel matrix in the
form of a generalized Laplacian (GL, see Section 2). Eigenvectors
of this GL approximate the eigenvectors to the BF graph (because a
matrix and its inverse have the same eigenvectors). Low pass poly-
nomial filters on this graph offer comparable performance to a dense
BF with less numerical complexity.

Several methods [11, 12, 13] have been proposed to estimate
a sparse inverse of a dense positive definite matrix in the con-
text of precision matrix estimation of a Gaussian Markov random
field (GMRF). We use the method proposed in [14] since it restricts
the inverse to be in the form of a GL. Because of the positive defi-
niteness of the BF kernel matrix [15], it is a valid input to this GL
estimation algorithm. If the matrix to be inverted is a covariance
matrix of a GMRF, then the GL estimates the corresponding pre-
cision (or inverse covariance) matrix. The precision matrix of a
GMRF captures the conditional independence relations between the
variables [16] and is expected to be sparse. The BF kernel function
can be interpreted as a covariance between two pixels that decays
rapidly as the geometric or photometric distance between the pixels
increases. Under this analogy, each pixel is expected to condition-
ally independent of other pixels, given the pixels which are most
similar to it [17]. Therefore, the inverse of the BF kernel matrix,
which is analogous to a precision matrix, is expected to be sparse.

We propose a simple heuristic algorithm to efficiently approxi-
mate the estimated GL based on the observed conditional indepen-
dence structure. The proposed heuristic voids the need for actually
estimating a GL using the method in [14]. The approximate GL
given by our heuristic is very sparse, such that each node (i.e., pixel)
is connected to roughly only 4 other nodes. We show empirically
that the approximate GL offers low frequency representation of the
image in its GFT basis, which is more compact than the one obtained
using a dense 7×7 BF graph. This is further demonstrated by the su-
perior denoising performance of the Wiener filter defined using the
GFT of the approximate GL. We design polynomial filters using the
approximate GL that offer comparable performance to the 7× 7 BF
at lower computational cost.
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2. MATHEMATICAL PRELIMINARIES

2.1. A Brief Review of GSP

Consider an undirected and weighted graph G with nodes V in-
dexed by {1, 2, . . . , N} and the edge set E = {(i, j, wij)}, where
(i, j, wij) denotes an edge with weight wij connecting nodes i and
j. The connectivity information is encoded by the adjacency ma-
trix W of size N ×N . The degree matrix D = diag{d1, . . . , dN},
where di =

∑
j wij is the degree of node i. The Laplacian ma-

trix L = D −W. The symmetric normalized forms of the adja-
cency and the Laplacian are given by W = D−1/2WD−1/2 and
L = D−1/2LD−1/2. A graph signal f : V → R is a mapping that
takes a real value on each node of the graph and can be represented
as f = [f1, . . . , fN ]> ∈ RN .

L (and L) has real eigenvalues 0 ≤ λ1 ≤ . . . ≤ λN and a
corresponding orthogonal set of eigenvectors U = [u1, . . . ,uN ].
The Graph Fourier Transform (GFT) of a signal f is defined as
f̃i =

〈
f ,ui

〉
(or in an equivalent matrix form f̃ = U>f ), where f̃i

is the GFT coefficient corresponding to frequency λi [4]. The GFT
can also be defined using L.

Spectral domain filtering of graph signals can be defined using
the GFT [18]. These spectral filters are of the form Uh(Λ)U>,
where Λ = diag{λ1, . . . , λN}. They modulate the GFT coeffi-
cients of the input signal by the spectral response h(λ) to produce
the output. If h(λ) is a polynomial

∑p
i=0 aiλ

i, then the filter can
be written as

∑p
i=0 aiL

i. Implementation of such polynomial fil-
ters boils down to computing p matrix–vector multiplications of the
form Lx. A non-polynomial spectral filter can be approximated by
a polynomial filter of sufficient degree for efficient implementation.

2.2. Graph Based Interpretation of the BF

A graph based interpretation of the BF can be obtained with nodes
corresponding to pixels and edge weights given by [5]:

wij = exp

(
−‖pi − pj‖2

2σ2
d

)
exp

(
− (fi − fj)

2

2σ2
r

)
, (1)

where pi denotes the position of pixel i and fi is the pixel intensity.
In a k×k BF graph, nodes i and j are connected iff j is in the k×k
neighborhood of pixel i. An example 5× 5 BF graph corresponding
to block 2 in Figure 3 is shown in Figure 1(a).

With f as the graph signal, the BF can be written as y =

D−1Wf . Defining f̂ = D1/2f , we can rewrite the BF as ŷ =

(I − L)f̂ . Thus, the BF can be interpreted as a low pass spectral
filter in the GFT domain defined using L with h(λ) = 1 − λ [5].
We propose to extend this idea by defining polynomial filters on a
sparse graph whose GFT approximates that of the original dense BF
graph. These filters will offer comparable or better performance to
the dense BF, but with lower complexity.

2.3. Laplacian Based Smoothness and GMRF

The notion of frequency defined for graph signals using the Lapla-
cian can be given a probabilistic interpretation by assuming that the
signals follow a GMRF model [19, 20]:

p(x) ∝ exp

(
−
∑
i,j

qij(xi − xj)
2 −

∑
i

qiix
2
i

)
. (2)

The term in the exponent can be rewritten as −x>Qx, where Q is
the inverse covariance (or precision) matrix. If Q is a symmetric

positive semi-definite matrix of the form αI − N, where I is the
identity matrix and Nij ≥ 0 ∀ i, j, then it is called a generalized
Laplacian (GL). Note that if qii =

∑
j −qij , then Q is a Laplacian,

while in general Q can be interpreted as a Laplacian with self loops.
If x>Qx is small, then x will have high likelihood with respect to
the GMRF. Therefore, if the GMRF is represented as a graph with
Laplacian Q, then a signal with high likelihood will be smooth on
that graph.

For x ∼ GMRF, the conditional correlation between xi and xj

given the rest of the variables corr(xi,xj |xk 6=i,j) = −qij/
√
qiiqjj .

xi,xj are conditionally independent iff qij = 0. Therefore, Q is
expected to be sparse [16].

An algorithm to estimate the inverse of a positive definite matrix
K in the form of a GL Q has been proposed in [14]. It solves the
following problem:

min
Q�0; qij≤0,i 6=j

− log det(Q) + tr(KQ) (3)

If K is a sample covariance matrix, then the above problem can be
thought of as a maximum likelihood estimation problem of a GMRF
under GL constraints.

3. SPARSE GRAPH CONSTRUCTION FOR IMAGES

3.1. Inverse of the BF Kernel Matrix as a Sparse GL

In order to find a sparse graph for adaptive filtering of an image,
we propose to solve (3) with K given by the BF kernel matrix, i.e.,
Kij = wij as defined in (1). Note that the BF kernel matrix is
positive definite [15] and hence, is a valid input for (3).

The idea of representing a dense BF kernel matrix by a sparse
graph with Laplacian Q ≈ K−1 is analogous to the idea of
parametrizing a GMRF, which has a dense covariance matrix, by a
sparse precision matrix. If we extend the analogy further and inter-
pret the BF kernel Kij as covariance between fi and fj , then the
zero entries of the estimated GL Q can be viewed as conditional in-
dependence relations between pixels. Since Kij decays very rapidly
as ‖pi − pj‖ or |fi − fj | increases, it is reasonable to expect fi to
be conditionally independent of other pixels, given the pixels which
are most similar to it [17]. Therefore, we expect to K−1 to be well
approximated by a sparse Q. In our experiments, we observe that Q
obtained by solving (3) is very sparse even with the absence of an
explicit sparsity constraint.

Since Q ≈ K−1, eigenvectors of Q will be approximately equal
to the GFT basis of the BF graph (i.e., the eigenvectors of L with
W = K). Moreover, an increasing order of the graph frequencies
of the BF graph (i.e., the eigenvalues of L) will correspond to a
similar ordering of the eigenvalues of Q. It has been observed that
an image has a low frequency representation in the GFT of the BF
graph [3, 5]. Therefore, the image will also be low pass in the GFT
defined using Q. Thus, the estimated sparse GL Q can be used
for designing computationally efficient low pass polynomial graph
filters (as explained in Section 2.1) with similar performance to the
dense BF.

3.2. Efficient Approximation of the Estimated GL

Solving (3) for estimating Q is computationally not feasible for large
images. In fact, our motivation was to reduce computational com-
plexity of filtering and representation by avoiding the computation
of a dense BF graph. Then, the goal is to quickly find a sparse graph
from an image that has similar eigenstructure as a dense BF graph
and enables efficient filtering.

1438



5.7386e−26 1

(a) 5× 5 BF graph

−1.3326e−16 1

(b) GL

0.10813 1

(c) Approximate GL

Fig. 1: Different types of graphs corresponding to block 2 in Figure 3.
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Fig. 2: Plot of −qij/max(|Q|) vs. Kij for one pixel in block 2

To achieve this goal, we propose a simple and efficient heuristic
for approximating the GL estimated by (3). The proposed heuristic
is based on the following observed characteristics of the estimated
GLs (see Figure 1 for an example): 1. Each node is connected to
roughly four other nodes. 2. At each node i, only the connections
with the highest BF similarity Kij are preserved in Q. An example
is shown in Figure 2. 3. Most of the connections are between nodes
which are within 2–hop distance of each other. The last observation
is consistent with the second, since the BF similarity between nodes
which are far from each other will be small.

These observations have a nice interpretation similar to the
Markov property of GMRFs [16]: the signal value fi at node i is
conditionally independent of the signal at other nodes given the 4
nodes which are most similar to i. The observations suggest the
heuristic shown in Algorithm 1 for fast approximation of Q.

Algorithm 1 Heuristic for fast approximation of Q

1: Input: Image f ∈ RN

2: Initialize: W = 0 (∈ RN×N )
3: for all pixels i do
4: Compute Kij with (1) ∀j ∈ 5× 5 neighborhood of i
5: Keep the largest 4 entries in W and set the rest to 0
6: end for
7: W← (W + W>)/2
8: di :=

∑
j Wij ∀i and D := diag{di}

9: Output: Qapprox := D−W

Although only the entries corresponding 4 largest values Kij

are preserved in Q for each node i, the mapping Kij 7→ Qij can

(a) Block 1 (b) Block 2 (c) Block 3 (d) Block 4

Fig. 3: Different image blocks taken from “Lena” image

be very non-linear as can be seen in Figure 2. We plan to investigate
this mapping in future for a better approximation of Q.

4. REPRESENTATION AND FILTERING WITH
PROPOSED GRAPH

We now demonstrate experimentally the efficacy of the proposed
sparse graph construction in image representation and filtering. We
consider four blocks taken from the “Lena” image, which are shown
in Figure 3. The blocks are selected in order to capture different
kinds of patterns such as strong edges, textures and smooth regions
commonly observed in natural images. To compare the quality of
representation offered by different graphs, we compute the fraction
of energy captured in the first m GFT coefficients,

∑m
i=1 f̃2i /‖f‖2,

obtained using the respective graph Laplacians. Figure 4 shows that
the GL and its approximation obtained using Algorithm 1 (AGL) of-
fer better energy compaction in the low frequency GFT coefficients
than the BF graph, especially when the image has more discontinu-
ities, as is the case in blocks 1 and 4. Moreover, the proposed graph
construction methods produce much sparser graphs than the conven-
tional BF graph. Average number of non-zero entries in the 7 × 7
BF graph, the GL and AGL are 8649, 1021 and 1168, respectively.

In order to evaluate the filtering performance of different graphs,
we consider denoising as an example application. We observe a
noisy version of the original image, corrupted by i.i.d. Gaussian
noise. The observed image is filtered using the following differ-
ent filters: 1. 7 × 7 BF; 2. Wiener filter in the GFT basis of the
BF graph; 3. Wiener filter in the GFT basis obtained using the
GL; 4. Wiener filter in the GFT basis obtained using AGL; 5. A
polynomial filter defined using AGL.

Wiener filter is the optimal filter for minimizing the MSE. Its
spectral response [3] is given by hw(λi) = f̃2i /(f̃

2
i + σ2

n), where σ2
n

is the noise variance. Note that it is a nonlinear filter which requires
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(b) Block 2
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(c) Block 4

Fig. 4: Fraction of energy in first m GFT coefficients. The plot corresponding to block 3 is omitted, since GFTs of all graphs offer similar energy compaction.
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Fig. 5: Spectral response of a polynomial filter using approximate GL

explicit computation of the GFT. The polynomial filter in Qapprox

approximates a filter with spectral response

h(λ) =
1 + exp(−rc)

1 + exp (r(λ/λmax − c))
. (4)

It is a linear low pass filter with cutoff cλmax. r controls the rate of
decay (see Figure 5). The response does not depend on the signal.
We approximate h(λ) with Chebyshev polynomials [18] of degree
8. Since most of the signal energy is captured by the low frequency
GFT coefficients and noise is spread in all frequencies, a low pass
filter will attenuate most of the noise while preserving the signal.
Choice of the cutoff depends on the noise level.

The PSNR values of the results for different images at various
noise levels are shown in Table 1. The Wiener filters on GL and
AGL show slightly better results than the Wiener filter on BF graph
whenever the representation of the clean signal is much more com-
pact in the GFT basis of GL than the GFT of BF graph. The results
are comparable in other cases. Polynomial filters in the AGL also
offer slightly better or comparable results than the 7× 7 BF.

As explained earlier, complexity of a k × k BF is O(mnk2).
On the other hand, consider a polynomial filter of degree p operating
on a graph where each node (i.e., pixel) is connected to at most 4
other nodes. Such a filter can be implemented as a sequence of p
degree-1 filters, each with complexity 4mn, followed by a sum of
p filtered images. Thus, its total complexity is roughly O(5mnp).
Thus, a (k×k) BF will have roughly the same complexity as a degree
k2/5 polynomial filter on a 4-connected graph. In the approximate
GL, each node is connected to roughly 4 other nodes. Therefore, a
degree 8 polynomial filter in the AGL will have less complexity than
the 7× 7 BF (since 8 < 72/5).

B N 7× 7 7× 7 W GLW AGLW AGLP

1

15 21.99 26.09 26.92 27.11 22.68
20 24.73 29.65 31.04 31.00 24.76
25 27.94 33.98 34.55 34.45 28.02
30 31.45 38.81 38.90 38.68 31.01

2

15 23.34 28.07 28.35 28.92 24.70
20 27.03 32.49 31.66 31.79 27.45
25 30.71 36.05 35.33 35.91 30.79
30 34.00 40.47 40.07 39.77 33.83

3

15 25.21 39.88 37.97 39.58 29.93
20 30.04 42.26 41.14 41.73 34.77
25 34.65 43.85 43.06 43.19 36.57
30 38.76 45.51 45.16 45.52 42.09

4

15 22.60 25.82 26.48 26.59 22.96
20 24.85 29.57 29.72 30.11 23.98
25 27.26 33.64 34.00 34.15 26.93
30 30.61 38.57 38.17 38.68 30.43

Table 1: Denoising results. Column ‘B’ shows the block numbers as speci-
fied in Figure 3. All other columns show PSNRs in dB with different filters.
(N) noisy input; (7 × 7) 7 × 7 BF; (7 × 7 W) Wiener filter on the BF
graph; (GLW) Wiener filter on the estimated GL; (AGLW) Wiener filter on
the approximate GL; (AGLP) Polynomial filter on the approximate GL.

5. CONCLUSION

We proposed an efficient method for estimating a sparse graph from
an image for its adaptive filtering and representation. The proposed
method is analogous to the framework of sparse inverse covariance
estimation for a GMRF model, where the BF kernel matrix plays the
role of a covariance matrix. The Laplacian polynomial filters on this
sparse graph offer a less computationally complex alternative to a
dense BF with comparable performance. Its GFT basis allows for
a more compact low pass representation of the image than the GFT
defined using a dense BF graph.

In future, we would like to consider the problem of designing
good polynomial filters on the sparse image graphs, based on the
graph spectrum and the application at hand. Comparing the perfor-
mance and complexity of such filters with previously proposed fast
approximations of the BF [21, 22] would also be useful. For theoret-
ical understanding of the proposed method, it would be interesting
to look at a more general problem of graphical model estimation in
reproducing kernel Hilbert spaces.
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