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ABSTRACT
Depth motion maps (DMMs) have shown effectiveness in
human action recognition, however, they lose the temporal
information and suffer from intra-class variations caused by
action speed variations. To address these challenges, we pro-
pose a novel method for human action recognition. Firstly,
Adaptive Hierarchical Depth Motion Maps (AH-DMMs)
are calculated over temporal hierarchical windows of video
sequences to capture the temporal information. Moreover,
adaptive windows and steps are employed to ensure that
AH-DMMs are robust to motion speed variations. Then,
Gabor filter is adopted to encode the texture information of
AH-DMMs, generating compact and discriminative action
representations. Finally, the representations serve as the input
of collaborative representation classifier (CRC). Experimen-
tal results on public benchmark MSRAction3D dataset and
DHA dataset demonstrate the superiority of the proposed
method over the state-of-the-art depth-based action recogni-
tion approaches.

Index Terms— Human action recognition, Depth motion
maps, Temporal information

1. INTRODUCTION

Human action recognition has been widely applied in a
number of real-world applications, e.g., video analysis [1],
human-computer interaction [2], and smart surveillance [3].
Though significant progress has been made in past decades
[4, 5], recognizing actions is still a quite challenging task due
to the inherent limitations of the traditional data source, such
as the variations in the lighting conditions, self-occlusions
and cluttered backgrounds. With the release of low-cost and
easy-operation depth sensor (e.g., Microsoft Kinect), it has
become feasible to capture depth information in real-time.
Compared with RGB cameras, depth sensors provide the 3D
information of human body, which makes it much easier to
recover postures and recognize actions.
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Relation to prior work: Based on depth images, various
representations have been developed for action recognition,
such as hyper-surface normals [6, 7], cloud points [8–10],
skeleton joints [11,12] and depth motion maps (DMMs) [13].
Our work is based on DMMs since they can effectively cap-
ture the motion and shape clues of human actions. DMMs
were proposed by Yang et al. [13], they projected depth maps
onto three orthogonal planes and accumulated global actions
through entire video sequences to generate DMMs, then his-
togram of oriented gradient (HOG) features were computed
from DMMs as the representation of the sequences. Chen
et al. [14] modified the DMMs by omitting the threshold for
real-time action recognition, and they used local binary pat-
terns (LBP) to characterize texture information of DMMs in
[15]. More recently, Wang et al. [16] calculated three DMMs
and each DMM served as an input to a Deep Convolutional
Neural Network (ConvNet) for classification. However, in all
of above works, DMMs were calculated from the entire video
sequence and the temporal information of an action may be
lost. Therefore, it is difficult to recognize two actions with
similar movements but reverse temporal orders, such as ac-
tions “stand up” and “sit down”. And DMMs cannot adapt to
motion speed variations, which leads to intra-class variations.

In this paper, we propose an effective method to address
above problems. First, a novel descriptor named as Adap-
tive Hierarchical Depth Motion Maps (AH-DMMs) is pro-
posed to capture the temporal information of actions. The
AH-DMMs are calculated over multi-size temporal hierarchi-
cal windows, therefore they encode more details of motion
and shape information which are lost in DMMs. Meanwhile,
by using motion energy based segmentation strategy, adaptive
windows and steps are generated, making our AH-DMMs ro-
bust to action speed variations. Second, Gabor features en-
coding the texture information of AH-DMMs are extracted
to further improve the discriminative ability of our descrip-
tors. Third, after reducing dimensions by Principle Compo-
nent Analysis (PCA), the final representations are classified
by l2-regularized CRC. The proposed method can not only
depict the motion and shape information, but also take tempo-
ral order and action speed variations into consideration. Our
method is evaluated on two benchmark datasets and achieves
superior performance over the state-of-the-art approaches.
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2. THE PROPOSED METHOD

2.1. Adaptive Hierarchical DMMs

DMMs [15] can effectively capture the motion and shape in-
formation of human actions. They are generated by projecting
the depth frames onto three orthogonal planes and accumu-
lating the difference between projected maps through the en-
tire sequence. Given a depth video sequence with N frames,
DMMs can be computed as follows:

DMM{f,s,t} =

N∑
i=2

∣∣∣mapi{f,s,t} −mapi−1{f,s,t}∣∣∣ (1)

where mapi{f,s,t} is the projected map of the i-th depth
map on front view, side view and top view. DMMs lose
the temporal information of action sequences and cannot
adapt to variations of motion speed. To solve these prob-
lems, we propose Adaptive Hierarchical Depth Motion Maps
(AH-DMMs), which are computed over a series of temporal
hierarchical windows to preserve temporal information. In
addition, to make our descriptors robust to motion speed, the
adaptive windows are selected based on motion energy. The
motion energy ME (i) of the i-th frame can be calculated
according to [6]. It is modified by removing the threshold for
better computational efficiency, which is given as:

ME (i) =
3∑

v=1

i−1∑
j=1

num
(∣∣mapj+1

v −mapjv
∣∣) (2)

where num (·) returns the number of non-zero elements in a
binary map; i = 2, ..., N ; v = {1, 2, 3} refers to three pro-
jection views, respectively. ME (i) reflects the accumulated
motion energy form the first frame to i-th frame, ME (1) =0.
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Fig. 1: Comparison of two structures. Hlm is the m-th hierarchy in
l-th level. (Fig.1 shows only two levels)

TheME of an action sequence is then subdivided into dif-
ferent segments according to the adaptive hierarchical struc-
ture, shown in Fig.1(a). In the structure, the level 1 includes
only one window which covers ME(N) motion energy. In
level 2, each window covers 1

2ME(N) motion energy, and
the step from one window to the next is half of the window
size. Therefore, in level l, each window size Wl and step
length Sl can be computed as follows:

Wl = (
1

2
)l−1ME(N) Sl =

1

2
Wl (3)

After dividing ME of the sequence, these segments’ cor-
responding frame indices are used to partition the video
sequence. Fig.2 is a specific example of generating AH-
DMMs with three levels. The ME is normalized to [0,1],
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Fig. 2: The generation progress of AH-DMMs with three levels from
a depth sequence. Llm and DMMlm refer to the frame length of m-
th window and the m-th group DMMs in l-th level, respectively.

obversely, ME(N)=1. In level 1, DMMs are computed
from entire sequence, and W1 = 1, S1 = 0.5. In level 2,
DMMs are computed over three overlapping windows, cor-
responding to W2 = 0.5, S2 = 0.25. In level 3, the action
sequence is divided into seven overlapping segments accord-
ing to W3 = 0.25, S3 = 0.125, and we compute DMMs
from each segment. Then DMMf , DMMs, DMMt from all
levels are normalized respectively and concatenated to form
our AH-DMMf , AH-DMMs, AH-DMMt.

Different from the temporal pyramid which divides se-
quences equally in time axis without overlapping [17], see
Fig.1(b), the adaptive hierarchical structure divides sequences
based on the distribution of motion energy. Therefore, it is in-
sensitive to speed variations.

Compared with DMMs, the AH-DMMs encode tempo-
ral information of action sequences, more details of motion
and more discriminative shape clues can be involved. Taking
Fig.3 as an example, it illustrates the DMMf and our AH-
DMMf of action “draw tick”. It can be seen that the AH-
DMMf not only captures the information of a whole action,
but also reflects the motion of sub-actions. From AH-DMMf ,
we can observe the movement details of “draw tick” clearly.
In addition, by using multi-size adaptive windows and steps,
the intra-class variations caused by different action speeds can
be reduced to a certain degree.

2.2. Gabor Filter Based Feature Representation

Gabor feature has shown effectiveness in capturing local
structure and texture information of images and is popular
in image processing field [18]. In this paper, Gabor filter
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 AH-DMMf (2 levels) DMMf 

Fig. 3: Comparison between traditional DMMf and AH-DMMf of
action “draw tick”. AH-DMMf captures the information of both the
whole action and sub-actions and encodes more details of motion.

is chosen to characterize the local appearance and shape on
AH-DMMs. We generate 40 Gabor filters with five scales
and eight orientations, and then the Gabor features are com-
puted by convolution of the AH-DMMs with Gabor filter.
For front, side and top view, a d-dimensional Gabor feature
vector can be obtained respectively. Then, we normalize the
range of three feature vectors to [-1,1] for better classification
accuracy and faster convergence rate. The three normalized
feature vectors are denoted as gAH−DMMf

, gAH−DMMs
,

gAH−DMMt
. The final feature representation g is the con-

catenation of three feature vectors, defined as follows:

g = [gAH−DMMf
, gAH−DMMs

, gAH−DMMt
] (4)

Since the concatenated feature vector has a high dimen-
sion, Principle Component Analysis (PCA) is adopted to re-
duce dimension and save 95% energy before classification.

2.3. Collaborative Representation Based Classification

The collaborative representation classifier (CRC) with l2
-norm regularization has shown good classification perfor-
mance and computational efficiency in face recognition [19],
image classification [20] and action recognition [15], which
motivates us to employ it in this paper.

Supposing that there are M training samples came from
C classes of actions, each action sequence generates a fea-
ture vector g with d dimensions. The training set can be
denoted as G = [G1,G2, ...,GC ] ∈ Rd×M , where Gj =
[g1, g2, ..., gmj

] denotes mj training samples from the j-th
class, j = 1, 2, ..., C. Let y ∈ Rd denote a testing sample,
the collaborative representation with l2 -norm regularization
can be mathematically represented as:

α̂ = arg min
α

{
‖y −Gα‖22 + λ ‖α‖22

}
(5)

where λ is the regularization parameter, α is a coefficient
vector corresponding to all the training samples. According
to [19], the solution of CRC can be derived as:

α̂ =
(
GTG+ λ · I

)−1
GTy (6)

After obtaining the coefficient vector, the residual errors be-
tween the feature vector y and the approximations can be cal-
culated by:

rj (y) = ‖y −Gjα̂j‖2 (7)

Table I: The performance of our AH-DMMs using different lev-
els and comparison with the baseline TP-DMMs on MSRAction3D
dataset under cross subject setting.

Levels
TP-DMMs AH-DMMs

Accuracy(%) Accuracy(%) Time/Sequence(s)
l=1 90.11 90.11 0.42
l=2 90.91 94.18 1.56
l=3 92.36 93.45 3.81

here α̂j is the coefficient vector associated with class j. Then
the class label of y can be obtained as follows:

class (y) = arg min
j=1,...,C

rj (y) (8)

3. EXPERIMENTS AND ANALYSIS

In this section, we evaluate the proposed method on bench-
mark MSRAction3D dataset [8] and DHA dataset [21]. We
firstly describe the datasets and their respective evaluation
setup, and then report our experimental results and analysis.

3.1. MSRAction3D Dataset
The MSRAction3D dataset contains 567 videos of 20 actions
and each action is performed by 10 subjects for 2 or 3 times.
This dataset is challenging for quite similar actions such as
“draw x” and “draw tick”, both of which have similar move-
ments of hands.

Experimental settings. To ensure a fair comparison, we
follow the cross subjects setting in [9], one half of the subjects
(1, 3, 5, 7, 9) for training and the rest subjects (2, 4, 6, 8,
10) for testing. The size of each DMMf , DMMs, DMMt

are normalized to 102*52, 102*75, and 74*54 respectively,
following [14]. The 5 scales and 8 orientations of gabor filter
are ν ∈ {0, 1, 2, 3, 4} , µ ∈ {0, 1, 2, 3, 4, 5, 6, 7}, the size of
filter template is fixed to 10 ∗ 11, whose values are chosen
from [18]. The regularization parameter λ of CRC is assigned
a value ranging from 0.0001 to 1, and we finally choose λ =
0.001, which leads to the highest recognition accuracy.

Evaluation of the hierarchical structure. The level l of
our AH-DMMs is considered to have notable impact on the
performance. Table I shows the recognition accuracies and
computation time with different values of l from 1 to 3. It
can be observed that our method obtains the best performance
when l=2, and the highest accuracy of 94.18% is obtained.

Comparison with the baseline. To verify the validity of
our method, it is compared with the baseline method: tem-
poral pyramid based DMMs (TP-DMMs). The recognition
accuracies are reported in Table I. As shown in Table I, when
l=1, AH-DMMs and TP-DMMs have the same performance
because both of them are equal to DMMs. While our method
performs better than the baseline when l=2 and 3. It’s be-
cause that TP-DMMs divides action sequence equally without
overlapping, while our method utilizes motion energy-based
segmentation strategy and is robust to intra-class variations.
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(a) average accuracy =94.18% (b) average accuracy =95.45%

Fig. 4: Confusion matrices of our method for (a) MSRAction3D
dataset and (b) DHA dataset

Table II: Comparison of the performance using different texture de-
scriptors on AH-DMMs (l=2).

Texture descriptors HOG LBP Gabor
Accuracy(%) 93.09 92.00 94.18

And AH-DMMs encode the information between two subse-
quences, so they capture more discriminative motion clues.

Evaluation of texture descriptors. We also compare the
performance of AH-DMMs (l=2) when using different texture
descriptors: Gabor, HOG and LBP. The experimental results
are shown in Table II. It can be seen that Gabor descriptor
performs better than HOG and LBP descriptors.

Comparison with the state-of-the-arts. Further we
compare the performance of our method with several state-
of-the-art methods on the MSRAction3D dataset and report
the results in Table III. Particularly, we note that the accuracy
of DMMs [13] is 88.73%, which is 5.45% lower than our
method. The DMM-LBP [15] method which also utilizes
depth motion maps obtains 93.00% accuracy, inferior 1.18%
to ours. Besides, our method performs better than other
methods using solo depth data such as “Random Occupancy
Pattern” [9], “HOG3D+LLC” [22], “Super Normal Vec-
tor” [6], “Hierarchical 3D Kernel Descriptors” [23]. And it
also outperforms the skeleton+depth based method “Moving
Pose” [12]. Our method outperforms these methods mainly
due to the following reasons. First, our AH-DMMs can suffi-
ciently capture motion information of actions as well as shape
clues of human body, and Gabor filter can effectively encode
local structure and texture information of AH-DMMs; Sec-
ond, with temporal information preserved, more details and

Table III: Comparison with the state-of-the-arts on MSRAction3D
dataset under cross subject setting.

Approaches Year Accuracy(%)
Bag of 3D Points [8] 2010 74.70

DMM-HOG [13] 2012 88.73
Random Occupancy Pattern [9] 2012 86.50

HON4D [7] 2013 88.89
DSTIP [10] 2013 89.30

HOG3D+LLC [22] 2016 90.90
Moving Pose [12] 2012 91.70
DMM-LBP [15] 2015 93.00

Super Normal Vector [6] 2014 93.09
Hierarchical 3D Kernel Descriptors [23] 2016 93.99

AH-DMMs+Gabor (Ours) 2016 94.18

Fig. 5: Similar lateral actions, such as “skip” (left) and “run” (right)
in DHA dataset.

Table IV: Comparison with the state-of-the-arts on DHA dataset un-
der LOSO setting.

Approaches Year Accuarcy (%)
DMHI-Gist [24] 2014 86.00

D-STV [21] 2012 86.80
SDM-BSM [25] 2015 89.95

DMPP-PHOG [26] 2015 95.00
AH-DMMs+Gabor (Ours) 2016 95.45

more plentiful information of motion can be obtained; Third,
our method is adaptive to speed variations, which helps to
reduce intra-class variations. The confusion matrix is shown
in Fig.4(a). It can be seen that 12 actions are 100% correctly
recognized. The similar actions “draw x” and “draw tick”
, “horizontal wave” and “high wave” are distinguished suc-
cessfully.

3.2. DHA Dataset
DHA dataset contains 483 videos of 23 different actions, and
each action is performed by 21 actors once. This dataset
is challenging because its inter-class ambiguity is quite
large. The parameter settings are the same as MSRAction
3D dataset and the evaluation setting adopted in DHA dataset
is Leave-One-Subject-Out (LOSO) setting [25].

The confusion matrix is shown in Fig.4(b). It shows that
11 actions are 100% correctly recognized and 17 actions
reach 95% recognition accuracy. The classification error oc-
curs in quite easily confused actions such as “skip” and “run”
due to their similar lateral motion patterns (as shown in Fig.
5). Table IV shows the experimental results compared with
the state-of-the-art methods on DHA dataset. It can be seen
that our method achieves the highest recognition accuracy of
95.45% in this dataset, which also proves the effectiveness
and robustness of the proposed method.

4. CONCLUSIONS

This paper presents an effective method for human action
recognition using AH-DMMs and Gabor filter. The proposed
AH-DMMs can capture more details of motion and shape
clues by preserving the temporal information of actions.
Meanwhile, the AH-DMMs are adaptive to action speed vari-
ations for using energy-based hierarchical structure. Gabor
filter is then adopted to encode texture information of AH-
DMMs and generates more compact action representations,
and CRC are utilized as the classifier. The experimental
results on two benchmark datasets show that our method out-
performs the state-of-the-art approaches. In future work, we
will focus on combining skeleton joints with depth data to
further improve the recognition accuracy.
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