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Abstract—Hyperspectral images(HSIs) provide hundreds of
narrow spectral bands for the land-covers, thus can provide
more powerful discriminative information for the land-cover
classification. However, HSIs suffer from the curse of high dimen-
sionality, therefore dimension reduction and feature extraction
are essential for the application of HSIs. In this paper, we
propose an unsupervised feature extraction method for HSIs
using combined low rank representation and locally linear em-
bedding (LRR LLE). The proposed method can simultaneously
use both the spectral and spatial correlation within HSIs, with
LRR modelling the intrinsic property of union of low-rank
subspaces and LLE considering the correlation within spatial
neighbours. Experiments are conducted on real HSI datasets and
the classification results demonstrate that the features extracted
by LRR LLE are more discriminative than the state-of-art
methods.

Index Terms—Hyperspectral image, low rank representation,
unsupervised feature extraction, locally linear embedding

I. INTRODUCTION

Hyperspectral images (HSIs) can provide not only spatial
but also spectral information of the land-covers in a scene
and therefore are widely used in both civilian and military
domain. However due to the existence of hundreds of spectral
bands, HSIs always suffer from the curse of dimensionality [1].
According to [2], the increase in data dimensionality requires
an exponential increase in the number of training samples
when used for classification. However, there is always limited
training data in HSIs. As a result, reducing the dimensionality
while simultaneously remaining the structural discriminative
features is rather important for HSIs.

In the past decades, different methods based on differen-
t constraints were proposed for the feature extraction and
dimension reduction for HSIs. The linear algorithms based
on principle component analysis (PCA) [3] and independent
component analysis (ICA) [4] have been widely used due

M. Wang and W. Sun are with the State Key Laboratory of Intelligent
Technology and Systems, Tsinghua National Laboratory for Information
Science and Technology, Department of Electronic Engineering, Tsinghua U-
niversity, Beijing 100084, China (e-mail: wangmd12@mails.tsinghua.edu.cn;
wdsun@tsinghua.edu.cn).

J. Yu is with the College of Computer Science and Technology, Beijing U-
niversity of Technology, Beijing 100124, China (e-mail: jing.yu@bjut.edu.cn).

L. Niu is with Cancer Hospital of Chinese Academy of Medical Sciences,
Beijing 100021, China.

This work was partly supported by the National Nature Science Foundation
(No.61501008) and the Key Project of the Science & Technology Develop-
ment Program of BEC (No.kz201310028035) of China.

to their relative simplicity and effectiveness. PCA intends to
preserve the most data variance with orthogonal projective
subspaces, while ICA aims to find the statistical independent
constitutional components using the mutual information as a
criterion for the independence. Green et. al [5] proposed the
maximum noise fraction (MNF) method with the measurement
by signal-to-noise ratio (SNR), which can actually be seen as
the noise-adjusted PCA. Nonlinear methods, such as ISOMAP
[6], locally linear embedding (LLE) [7], Laplacian Eigenmap
[8], were proposed to preserve the correlation between samples
in the lower dimensional manifold. Several methods were
proposed based on the mixing nature of HSIs, such as vertex
component analysis (VCA) [9] and minimum volume con-
strained nonnegative matrix factorization (MVC-NMF) [10],
both of which were firstly proposed for hyperspectral unmxing
and as a result can serve as dimension reduction methods.
The mostly recently work intrinsic representation (IR) [11]
employed the underlying physical mixing factors and ad-
dressed the noise variance spectrally heterogeneity effect and
the spatial correlation at the same time.

The methods above all aim to explore a representation that
can simultaneously reduce the dimensionality and extract the
structural discriminative features. In accordance with this basic
principle, we propose a novel method using the framework
of low rank representation (LRR), as LRR can structurally
represent the spectral space in HSIs in an unsupervised way,
which is a union of multiple low-rank subspaces. At the
same time, LLE is combined with LRR to address the spatial
correlation information.

The rest of this paper is organized as following. Section
2 introduces the novel feature extraction method LRR LLE.
Experimental results and discussion are shown in Section 3,
and conclusion is drawn in Section 4.

II. THE PROPOSED METHOD

A. The framework of LRR

An HSI data X ∈ RP×B (which is reorganized from the
HSI datacube X ∈ RM×N×B with P = MN denoting
the pixel number and B being the band number), is always
considered lying in a low-dimensional manifold, which can
be derived from the linear mixing model (LMM) [10], [12],
[13]. The pixels in HSI can always be classified into several
categories according to their spectral property, such as soil,
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vegetation, water, road, and buildings. Based on the class
property, the spectral space of HSI can be divided into multiple
subspaces, termed as {S}Kc . The spectral vectors within each
class are highly correlated and thus they should lie in a
low-dimensional manifold, which means that Sc is low-rank.
Therefore the whole spectral space can be seen as the union
of such low-rank subspaces

⋃K
c=1 Sc. Considering the mixing

nature of hyperspectral pixels, the spectral data may lie in
a union of multiple low-rank subspaces instead of a single
low-rank space. An informative data representation when used
for feature extraction should preserve the subspace-inherent
structures and minimize the inter-subspace components. LRR
[14] is a powerful representation tool for this purpose, because
it is demonstrated that LRR is able to represent the structural
information of the union of multiple independent subspaces
[14]. Data drawn from

⋃K
c=1 Sc can be handled with the

following formulation:

min
Z,E

rank (Z) + λ‖E‖0 s.t. X = AZ+E (1)

wherein, A is a dictionary that can span the data subspaces,
‖·‖0 denotes the `0-norm of the noise matrix E and λ is a
balance parameter. The structural reconstructed data can be
obtained by X̂ = AZ∗, where Z∗ is the optimal solution
of Eq.(1). However, in real application, the dictionary A is
always unknown, a good choice is to set A = X. To make
the optimization convex, the rank constraint and the `0-norm
are replaced by nuclear norm and `1-norm respectively,

min
Z,E
‖Z‖∗ + λ‖E‖1 s.t. X = XZ+E (2)

Eq.(2) can be solved using the inexact augmented Lagrange
multiplier(IALM) [15] method.

B. Unsupervised feature extraction using LRR LLE

The framework of LRR can only represent the global
spectral structure of HSIs. However as pointed out in [16],
it is essential to integrate the spatial correlation together with
the spectral correlation when extracting features from HSIs,
as the correlation within neighboring pixels can be potentially
high.

LLE was proposed in [7] for unsupervised feature extraction
based on simple geometric intuition that the data point and its
neighbours are expected to lie on or close to a locally linear
patch of a manifold. Therefore LLE is a good framework to
address the spatial correlation in HSIs.

In this section, we will firstly outline the LLE method and
secondly describe how we combine LRR and LLE together
for the unsupervised feature extraction.

1) Locally linear embedding: LLE is proposed to com-
pute low-dimensional, neighborhood-preserving embeddings
of high-dimensional inputs. It can recover global nonlinear
structure from locally linear fits. The local geometry is char-
acterized by linear coefficients that reconstruct the data point
using its neighbours. The coefficients are obtained by the
following optimization,

{Wij} = argmin
Wij

‖Xi −
∑
j

WijX
(i)
j ‖

2
F (3)

where Xi is the data point (column-vector) to be reconstructed
and {X(i)

j } are the neighbours of Xi. Wij summarizes the
contribution of X

(i)
j to the reconstruction of Xi. According

to LLE, the extracted features should preserve neighbourhood
geometric manifold, therefore the embedding cost function is,

L =
∑
i

‖Yi−
∑
j

WijY
(i)
j ‖

2
F = Tr

(
Y (I−W)

T
(I−W)YT

)
(4)

where Yi is the extracted feature, or somehow a transform in
the new manifold, from data point Xi, and Y

(i)
j corresponds to

X
(i)
j , Y is the matrix constituted by the set of vectors {Yj},

W is coefficient matrix, with [W]ij being Wij if Xj is a
neighbour of Xi and 0 if not.

2) The LRR LLE method: In the proposed method, we aim
to combine the LRR and LLE for the feature extraction of
HSIs, while LRR can employ the structure of the union of
low-rank subspaces and LLE can take the spatially correlation
into account. In the model described in Eq.(2), the ith-column
Zi in the coefficient matrix Z is actually a transform for the ith
data sample Xi in the self-representation domain. Therefore,
if Xj is a neighbour of Xi and contributes a weight with
Wij from model (3), Zj should also be the neighbour of Zi

with the weight Wij . From the framework of LLE, the em-
bedding constraint should be Tr

(
Z (I−W)

T
(I−W)ZT

)
.

Therefore, the whole LRR LLE method is modelled as,

min
Z,E
‖Z‖∗ + λ‖E‖1 +

β

2
Tr
(
Z (I−W)

T
(I−W)ZT

)
s.t. X = XZ+E

(5)

where β is a balance parameter between the low-rank con-
straint and the LLE manifold constraint. The correlation matrix
W can be constructed using the geometric reconstruction
of X. The neighbours of Xi are selected by the geometric
distance measurement in the image domain, which means that
the pixels within a grid size of w×w in the neighbourhood of
Xi are selected. Eq.(5) can also be solved using IALM [15].

The structural extracted data can be obtained using X̂ =
XZ∗, where Z∗ is the optimal solution of Eq.(5). However this
is just a data processing procedure, with the data dimensionali-
ty remaining unchanged. For purpose of feature extraction and
dimension reduction, PCA is used as a post-process procedure.

III. EXPERIMENTS AND DISCUSSION

In the experiments, the proposed LRR LLE method is tested
on two real HSI datasets. The evaluation of the effectiveness
of the method is through HSI classification accuracies using
supported vector machine (SVM) with the radial basis function
(RBF).

A. Experiments set-up

The experiments set-up mainly contains two aspects:
datasets and compared methods.
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1) Datasets: There are two datasets used in the experi-
ments: 1) The Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) image Indian Pines was taken over Northwest
Indianas Indian Pines test site in June 1992. Indian Pines has
a spatial size of 145 × 145 and 220 bands. Considering the
water absorption, bands [104-108], [150-163], 220 are heavily
corrupted and removed from the original data, therefore a
145 × 145 × 200 data is used in the experiments. There are
16 classes in the data. A sample band is shown in Fig.1(a). 2)
The data of Pavia University acquired by the reflective optics
system imaging spectrometer(ROSIS) is used, with 103 bands
and 610 × 340 pixels. Within Pavia University there are 9
classes of land-covers. Fig.1(b) shows the band 83 of the Pavia
University data.

(a) (b)

Fig. 1. Sample bands of the datasets: (a) band 100 of the Indian Pines, (b)
band 83 of the Pavia University.

2) Compared methods: Two traditional widely used meth-
ods, PCA and ICA; a hyperspectral unmixng-based method,
MVC-NMF; and the most recently work IR [11] (only the
complete method referred as IR2 in the paper are used here),
which is the state-of-art method as long as we know, are used
as the compared methods. To evaluate the effects of different
parts of our proposed method, the results of LLE, LRR and
LRR LLE are also compared.

B. Experimental results and discussion

For the Indian Pines, each unsupervised feature extraction
method is applied to extract 20 features. There are 16 classes in
Indian Pines and 10% of the labelled samples in each class are
used for training and the rest for testing. The classification are
repeated for 10 times and the average of the results, including
the average accuracy (AA), overall accuracy (OA) and the
kappa coefficient, are shown in Table I. It can be observed that
the proposed method LRR LLE performs best, outperforming
the state-of-art method IR for about 5.6% in OA and 5.2% in
AA. Compared with the original data, the data after feature
extraction and dimension reduction using LRR LLE improves
OA by 11.37% and AA by 12.54%. Both LLE and LRR
performs worse than the original data, however the combined
method LRR LLE method performs much better. It means
that LRR LLE benefits from the integration of the spectrally
constraint LRR and spatially constraint LLE.

All the methods are used for Pavia University to extract 15
features, which serve as the input of the SVM classifier. There

TABLE I
CLASSIFICATION ACCURACIES USING SVM (OA, AA IN PERCENTAGE)

FOR THE ORIGINAL DATA AND THE RESULTS BY THE UNSUPERVISED
FEATURE EXTRACTION METHODS (BEST RESULTS ARE HIGHLIGHTED IN

BOLD).

Indian Pines Pavia University
OA AA kappa OA AA kappa

original 82.76 80.76 0.8034 88.31 90.45 0.8479
PCA 79.95 79.87 0.7712 74.47 82.35 0.6777
ICA 74.27 70.71 0.7057 83.27 87.38 0.7840

MVC-NMF 74.04 71.12 0.7023 82.96 85.78 0.7775
LLE 79.76 77.47 0.7694 87.77 90.04 0.8411
LRR 82.34 78.47 0.7984 91.22 92.34 0.8852
IR 88.5 88.1 0.869 93.1 94.3 0.909

LRR LLE 94.13 93.30 0.9330 95.03 95.43 0.9345

are 9 classes in Pavia University and 100 samples in each class
are used as the training set and the remaining as the testing set.
It is shown that LRR, IR and LRR LLE all outperforms the
original data, while LRR LLE is the best. Compared with IR,
the proposed method achieves an improvement of about 1.9%
and 1.1% respectively in OA and AA. LLE performs slightly
worse than the original data and LRR performs better, however
not good enough, even worse than IR. Compared with LLE
and LRR, the great performance of LRR LLE is demonstrated
to be derived from the combination of the spectral and spatial
constraint.

The impact of the number of features on the classification
accuracy is analysed using the Indian Pines dataset. Fig.2
shows the OA and AA upon different number of the extracted
features. As IR [11] does not provide the source code of
the method, we only use the results in the reference paper
using a dashed line, which is actually the result when the
number of features is 20. The classification result of the
original data can provide a reference accuracy, however it has
no correlation with the number of features, therefore is also
shown in a dashed line. It can be observed that the proposed
method LRR LLE greatly outperforms the other methods. It
achieves the highest accuracy when the number of features
is approximately 20 and remains approximately constant even
when the number of features increases. LRR can outperform
the original data when the number of features is comparatively
large. PCA performs slightly worse than the original data
and performs better when the number of feature increases.
Apparently it has the upper bound by the result of the original
data. LLE, ICA and MVC-NMF are all worse than the original
data, while ICA and MVC-NMF has the best result when
the number is approximately between 20-30. In conclusion,
our proposed method has great performance and shows great
stability upon the number of extracted features.

Fig.3 shows the classification accuracies of Indian Pines
using different numbers of training samples per class, when
the number of features are fixed at 20. It is shown that when the
training samples are only 10 per class, our proposed method
LRR LLE performs slightly worse than IR, however in av-
erage LRR LLE performs the best among all the methods.
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Fig. 2. Classification results for Indian Pines using different numbers of
features.

LRR LLE achieves an average improvement of 4.47% in OA
and 2.97% in AA upon IR, which are 12.07% and 7.35%
respectively when compared with the original data.
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Fig. 3. Classification results for Indian Pines using different numbers of
training samples per class.

IV. CONCLUSION
In this paper, we have proposed a novel unsupervised feature

extraction method using combined LRR and LLE for HSIs.

LRR is a framework for robust recovery of a union of multiple
low-rank subspaces, therefore is capable to structurally repre-
sent the spectral space of HSIs. LLE is a nonlinear dimension
reduction method which aims to preserve the locally geometric
manifold. Combination of LRR and LLE using model (5)
can simultaneously employ the structurally spectral correlation
and the locally spatial correlation information. Experiments
with a following classification task using SVM show that the
proposed method LRR LLE benefits from the combination
of the spectral constraint using LRR and spatial constraint
using LLE, and greatly outperforms the state-of-art methods
when used for the structural unsupervised feature extraction
for HSIs.
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