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ABSTRACT

This paper proposes a novel facial image representation
Block-based Local Contrast Patterns (BLCP) for illumination-
robust face recognition. This method is based on an effective
texture descriptor local contrast patterns (LCP). We use the
directed and undirected difference masks to calculate three
types of local intensity contrasts: directed, undirected, and
maximum difference responses. These response images are
divided into several nonoverlapping blocks. In each block
these responses are quantized and encoded into specific pat-
terns. A joint histogram of these patterns is computed for each
block and then we concatenate all the blocks’ histograms into
an enhanced feature vector to be used as a face descriptor.
The experimental results on Extended Yale-B and FERET
databases illustrate the effectiveness of our proposed method
in illumination-robust face recognition.

Index Terms— Facial image representation, local con-
trast pattern, illumination-robust, face recognition

1. INTRODUCTION

Face recognition has recently received a lot of attention and
has been applied in amounts of fields. Despite the tremendous
advance, illumination-robust face recognition is still challeng-
ing in automatic face recognition. In recent years, there have
been a lot of face recognition approaches for dealing with face
image variations that are due to illumination changes. They
can be classified into four categories roughly.

The first category attempts to handle illumination normal-
ization problem with traditional image processing methods,
such as Histogram Equalization (HE) [1], Gamma Intensity
Correction (GIC) [2], etc. These methods are mostly based
on intensity transformation and used as pre-processing meth-
ods. The second category learns the model of face images
under varying illumination using the illumination samples.
In [3] the author made the explanation that arbitrary illumi-
nation condition could be modeled by an image basis and
showed that five eigenfaces suffice to represent face images
under a wide range of lighting condition. The third category
deals with illumination variations by removing the illumina-
tion component. Jobson et al. introduced the Retinex ap-

proach to obtain reflectance component by estimating the il-
lumination component [4]. Some methods were proposed to
remove the illumination component in transformation domain
as well, such as Homomorphic filtering approach [5], discrete
cosine transform in logarithm domain [6], etc. The fourth cat-
egory attempts to find an representation which is insensitive
to illumination variation. Weberface [7] and Generalized We-
berface (GWF) [8] are representatives of this category.

Apart from the above methods dedicated to illumination
normalization, some approaches originated from local pattern
features are employed for illumination-robust face recogni-
tion as well. Local Binary Patterns (LBP) [9] is focused on
the certain relationship of pixels in local neighborhood. Lo-
cal ternary pattern (LTP) [10] and Local Quantized Patterns
(LQP) [11] attempt to explore the encoding rules. They have
proved to be effective face descriptors in face recognition due
to their simplicity and micro-patterns.

In [12], Song et al. designed a filter bank consisting of
directed and undirected masks to extract direction informa-
tion and variation information from texture images. Their
LCP descriptor performs excellently in texture recognition.
But its global measurement and rotation invariable encod-
ing method have become the major obstacle to directly intro-
ducing LCP into face recognition. In this paper we propose
Block-based Local Contrast Patterns (BLCP). Our method
is based on LCP which fully acquires texture information.
Meanwhile, it solves the aforementioned problems so that we
can apply it to face images.

2. ALGORITHMS

In this section, we will introduce the procedures of our ap-
proach. Especially, the differences between our BLCP and
the origin LCP will be stated in detail. Fig 1 illustrates the
proposed method.

2.1. Masks and Responses

The directed and undirected difference masks that we use are
shown in Fig 2, where the white and black regions indicate
positive and negative weights, respectively.
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Fig. 1. Flowchart of proposed method.

Fig. 2. Illustration of the directed and undirected differ-
ence masks. Top row: directed first-order difference masks.
Bottom row: (left) directed second-order difference masks,
(rightmost) undirected difference mask.

Now we will use these masks to calculate the three types
of responses. Let I(x, y) be a facial image, where (x, y) is
the pixel index. The contrast response is calculated by

CR(x, y) =
1

|W+|
∑

(u,v)∈W+

I(u, v)− 1

|W−|
∑

(u,v)∈W−

I(u, v)

(1)
where W specifies a circular mask window centered at pixel
(x, y) with radius r. W+ and W− are parts of W that have
positive and negative weights, respectively, and | · | denotes
the cardinality.

Then we can obtain the directed (first-order and second-
order) and undirected difference responses for each pixel.
Meanwhile, the maximum difference responses are de-
rived from the maximum absolute values of first-order or
second-order difference responses. To distinguish these
responses, we denote the resulting directed, undirected
and maximum difference responses as CRl,d

dir, CRundir

and CRl
max, respectively. Here, l ∈ {1, 2} is the or-

der, d ∈ {0, 1, . . . , D − 1}(D = 8) is the orientation
index of directed difference masks and CRl

max(x, y) =

max
d

abs(CRl,d
dir(x, y)).

2.2. Block-based Local Contrast Patterns

We now attempt to quantize and encode these contrast re-
sponses into specific patterns.

(1) Directed contrast patterns

Firstly we review the operation which the LCP operator
performed on texture images [12]. For pixel (x, y), it de-
fines dCRl,d

dir(x, y) = CRl,d
dir(x, y)−thrl,d, where thrl,d

is a global threshold for the l-th order and the d-th speci-
fied orientation:

thrl,d =
1

|CRl,d
dir|

∑
(x,y)

CRl,d
dir(x, y) (2)

From formulation 2, we can see that the threshold is the
mean value of a whole response image. For texture im-
ages like the example that Fig 3 shows, the global mea-
surement performs well because a texture image gener-
ally includes only few simple types of texture. A face im-
age as is shown in Fig 3 is much more complicated than
a texture image. However, we can assume that in a local
region of a face image, the texture varies slightly and is
just as simple as a texture image.

Based on the assumption above, we want to divide each
response image into N nonoverlapping blocks and let the
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Fig. 3. Typical examples of texture (left) and face (right) im-
ages.

set of pixels in the i-th block be Pi. Then we calculate
block-wise thresholds:

thrl,di =
1

|Pi|
∑

(x,y)∈Pi

CRl,d
dir(x, y), (3)

and we redefine dCRl,d
dir(x, y) = CRl,d

dir(x, y) − thr
l,d
i ,

for pixel (x, y) ∈ Pi. The block-based thought is also
applied in the other response images and will not be
repeated in the following subsections. Then we let
bCRl

dir(x, y) = [s(dCRl,0
dir(x, y)), · · · , s(dCR

l,7
dir(x, y))],

where s(x) is a sign function:

s(x) =

{
1, x > 0
0, x ≤ 0

(4)

So bCRl
dir(x, y) is a 8-bit binary code corresponding to

the pixel (x, y). To encode bCRl
dir, the origin LCP op-

erator uses the rotation invariant uniform 2 (riu2) mea-
surement which is rotationally invariant. For instance,
it encodes 10000000, 00100000 and 00000100 into the
same pattern. Rotation invariance is necessary to adapt
to texture with any angle of rotation, while it has a neg-
ative effect on face image recognition because texture’s
orientation is an important factor to distinguish different
faces. To overcome the obstacle, we apply the uniform 2
(u2) used in [9] to encode these responses. This method
is able to effectively distinguish texture’s different orien-
tations. We denote the encoding result as BLCP l

dir. For
an 8-bit binary code, the encoding result has 59 patterns.

(2) Maximum contrast patterns

For the maximum difference responses, the three-valued
quantization via local thresholding is adopted, i.e., for
pixel (x, y) ∈ Pi,

BLCP l
max(x, y) =

 2,
1,
0,

CRl
max(x, y) > µl

i + kσl
i

CRl
max(x, y) < µl

i − kσl
i

otherwise
(5)

where k is a scale factor, µl
i and σl

i are the mean and
the standard deviation of the i-th block of the maximum
difference responses, respectively.

(3) Undirected contrast patterns

Since the undirected difference responses contain the
sign (polarity) information, we perform the signed three-
valued quantization, i.e., for pixel (x, y) ∈ Pi,

BLCPundir(x, y) =

 2,
1,
0,

CRundir(x, y) > m+
i

CRundir(x, y) < m−i
otherwise

(6)
where m+

i and m−i are local thresholds of the i-th block
and defined by the means of positive and negative differ-
ence responses, respectively, i.e.,

m+
i = 1

M+
i

∑
(u,v)∈Pi,CRundir(u,v)>0

CRundir(u, v)

m−i = 1
M−

i

∑
(u,v)∈Pi,CRundir(u,v)<0

CRundir(u, v)

(7)
Here, M+

i and M−i are the numbers of pixels which have
positive and negative CRundir(x, y) in Pi, respectively.

2.3. Joint Histogram Representation

In this step, we will build joint histograms for each block and
then concatenate these histograms into the BLCP facial de-
scriptor. Now we have BLCP l

dir(0 ∼ 58), BLCP l
max(0 ∼

2) and BLCPundir(0 ∼ 2). We define BLCP l
joint =

3 ∗ BLCP l
max + BLCPundir. Obviously the value range

of BLCP l
joint is 0 ∼ 8 and there is a one-to-one correspon-

dence between anBLCP l
joint value and an (BLCP l

max, BLCPundir)
point.

Now we have a point (BLCP l
dir(x, y), BLCP

l
joint(x, y))

for each pixel (x, y) and the number of the two-dimension
histogram bins will be 59× 9. In each block, we respectively
bulid two histograms for first and second order BLCP s
(l = 1, 2), which are regarded as descriptors of the block.
Finally, we concatenate each block’s histograms to construct
the facial descriptor for our following face recognition.

3. EXPERIMENTS

3.1. Experimental Setup

In our experiments, the radius r of these masks is set as 4 pix-
els, which means the size of a mask is 9×9. All the responses
are divided into rectangular blocks with size 8 × 8. The co-
efficient k in maximum contrast patterns is 1. Our BLCP op-
erator is tested on both Extended Yale-B [13] and fc subset
of FERET database [14]. We use histogram intersection to
measure the similarity between two histograms. The nearest
neighborhood rule is used as the classifier.

(1) Extended Yale-B. In the extended Yale-B database, there
includes 38 subjects under 9 poses and 64 illumination
conditions. All images are divided into 5 subsets accord-
ing to the angle between the light source direction and
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Fig. 4. Columns, from left to right, respectively, show: facial images under three illumination conditions;BLCP 1
dir;BLCP 2

dir;
BLCP 1

max; BLCP 2
max; BLCPundir.

the central camera axis. In our experiments, we used im-
ages with the most neutral light conditions (‘A+000E+
00′) as the gallery, and only frontal images in subsets as
probes. All images are cropped and resized to 120× 120.

(2) FERET-fc. In the standard FERET database, the basic
gallery fa contains 1, 196 images of 1, 196 subjects. The
fc set is designed for evaluating the illumination variation
and includes 194 images of 194 subjects taken in the same
time under significantly different lighting conditions. For
our experiments, all images are aligned, cropped and re-
sized to 128× 128 based on the location of the eyes.

3.2. Results and Discussions

Table 1 and Table 2 respectively present the comparison re-
sults of recognition rates on Extended Yale-B and FERET-
fc. LGBP (Gabor + LBP) achieves slightly better recogni-
tion results than BLCP on FERET-fc database, beacause a
total of 40 Gabor filters are used to capture multi-scale and
multi-orientation information of a face image, which leads to
a descriptor with much higher dimension than our BLCP de-
scriptor. Except that, it’s obvious that our method performs
excellently on both databases and outperforms most of the
traditional local patterns methods.

Fig 4 presents the encoding results of three face images of
the same person under different illumination conditions. We
can see that although there are illumination changes, almost
all the encoding results are able to keep the main informa-
tion and hold high similarity. Different from the traditional
methods aiming at the relationship between center pexel and
its surrounding pixels, our descriptor shows each block’s lo-
cal texture feature. This determines that the BLCP descrip-

Table 1. Recognition rates % on Extended Yale B.
Methods S1 S2 S3 S4 S5 AVG
LBP [9] 100 100 96.9 61.0 34.9 78.6

POEM [15] 100 100 96.5 75.7 80.5 90.5
LTP [10] 100 100 97.8 78.0 58.5 86.9
LSP [16] 100 100 99.3 79.7 48.9 85.6

BLCP 100 100 99.6 95.6 96.2 98.3

Table 2. Recognition rates % on FERET-fc.
Methods Rate%
LBP [9] 80.9
LTP [10] 70.6
LSP [16] 83.5
LQP [11] 69.6

LGBP [17] 97.0
POEM [15] 95.0

BLCP 96.4

tor tends to be more robust to the influence of illumination
changes.

4. CONCLUSION

In this paper, we have proposed a new facial descriptor based
on local contrast patterns. Some approaches have been intro-
duced to adapt LCP to facial image representation. The BLCP
keeps the virtue of LCP so that it can obtain rich texture in-
formation of facial image. Experiments have proved that our
proposed BLCP descriptor is an illumination insensitive rep-
resentation.
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“Face recognition using local quantized patterns,” in
British Machive Vision Conference, 2012, pp. 11–pages.

[12] Tiecheng Song, Hongliang Li, Fanman Meng, Qingbo
Wu, Bing Luo, Bing Zeng, and Moncef Gabbouj,
“Noise-robust texture description using local contrast
patterns via global measures,” Signal Processing Let-
ters, IEEE, vol. 21, no. 1, pp. 93–96, 2014.

[13] Kuang-Chih Lee, Jeffrey Ho, and David Kriegman, “Ac-
quiring linear subspaces for face recognition under vari-
able lighting,” Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, vol. 27, no. 5, pp. 684–
698, 2005.

[14] P Jonathon Phillips, Hyeonjoon Moon, Syed A Rizvi,
and Patrick J Rauss, “The feret evaluation methodol-
ogy for face-recognition algorithms,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol.
22, no. 10, pp. 1090–1104, 2000.

[15] Ngoc-Son Vu and Alice Caplier, “Enhanced patterns of
oriented edge magnitudes for face recognition and im-
age matching,” Image Processing, IEEE Transactions
on, vol. 21, no. 3, pp. 1352–1365, 2012.

[16] Yinyan Jiang, Yong Wu, Weifeng Li, Longbiao Wang,
and Qingmin Liao, “Log-domain polynomial filters
for illumination-robust face recognition,” in Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE In-
ternational Conference on. IEEE, 2014, pp. 504–508.

[17] Wenchao Zhang, Shiguang Shan, Wen Gao, Xilin Chen,
and Hongming Zhang, “Local gabor binary pattern
histogram sequence (lgbphs): A novel non-statistical
model for face representation and recognition,” in Com-
puter Vision, 2005. ICCV 2005. Tenth IEEE Interna-
tional Conference on. IEEE, 2005, vol. 1, pp. 786–791.

1422


