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ABSTRACT

In this paper, we propose a robust descriptor named as
multiple gradient-related features (MGRF) in virtue of local
and overall order encoding. Specifically, three types of fea-
tures are introduced, including multidirectional gradient, gra-
dient orientation, and first derivative of gradient orientation,
each of which represents different aspect of region of interest
(ROI). To extract these features, we also propose a novel sam-
pling pattern of tree structure. Furthermore, each gradient-
related feature is encoded with both local and overall order
information of ROI, and the encoding results are respectively
called local and overall gradient order code (GOC). Finally,
our descriptor is formed by concatenating the respective fea-
ture vector of each type of feature, which is computed as a 2-
D joint histogram of GOC and ordinal bin. The experiments
conducted on Oxford dataset demonstrate that the proposed
descriptor significantly outperforms other state-of-the-art de-
scriptors.

Index Terms— feature description, ordinal information,
multiple gradient-related features, gradient order code

1. INTRODUCTION

Local image descriptors lay important foundations on many
visual applications in computer vision and pattern recogni-
tion, involving image retrieval, image matching, 3D recon-
struction, panoramic stitching, object tracking and recogni-
tion, etc. In many applications, it has been shown that lo-
cal image description have more remarkable influences on
the performance of local features compared with the differ-
ent choices of detection methods [1]. Therefore, current re-
searches on local features are mainly devoted to computing a
more discriminative and robust descriptor for region of inter-
est (ROI).

Recently, large numbers of descriptors have been pro-
posed in the literature. The most typical descriptor is SIFT
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[2], which is computed as a histogram of gradient orien-
tation on 4×4 location cells. Many other similar feature
descriptors such as GLOH [1], SURF [3], and DAISY [4],
also have been introduced, encouraged by the success of the
SIFT description. Unfortunately, although these descriptors
are fully or partially robust to many of the geometric image
transformations such as rotation, scale, occlusions, etc., they
cannot deal with complex brightness changes. To cope with
this problem, an increasing number of methods, which use
orders of intensities rather than the raw intensity values, are
proposed, such as HRI-CSLTP [5], LIOP [6], MROGH [7],
MRRID [8], and MIOP [9]. In [5], the HRI descriptor is
constructed as a histogram of overall intensity order on a
4×4 spatial cells similar to the location cells used by SIFT.
The CS-LTP descriptor captures local gradient properties,
which is an improvement of CS-LBP by replacing a bina-
ry code with a ternary code. As for [6, 7, 8, 9], the only
difference lies in different encoding schemes: LIOP uses a
permutation-based encoding scheme [6], MROGH adopts a
gradient-based encoding method [7], and MRRID utilizes an
intensity comparison approach similar to CS-LBP [8]. An
interesting descriptor, known as MIOP, is presented in [9],
which is the first to integrate local and overall intensity order
information. The MIOP descriptor is obtained by concatenat-
ing LIOP [6] and OIOP descriptor in [9], which encodes each
sampling point with the quantized overall intensities order.

The excellent performances of these descriptors [5, 6, 8,
9] have demonstrated the effectiveness of using ordinal in-
formation to describe ROI. However, all of these descriptors
only use intensities to encode local information and ignore
use of the gradient, which can capture the structural and tex-
ture information in images in detail. Meanwhile, the gradient
is less susceptible to lighting and camera changes. Therefore,
these descriptors [5, 6, 8, 9] cannot preserve local contrast
and edge information in detail and suffer degradation in the
discriminative ability.

To make full use of the informative gradient as well as
the effective ordinal information, we introduce three gradient-
related features and aggregate order into gradient domain in
this paper. Our contributions are threefold: 1) We establish
a novel sampling pattern of tree structure to extract our pro-
posed features. 2) We propose three types of gradient-related

1408978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



features and aggregate ordinal information into them. 3) We
compute a 2-D joint histogram of gradient order code (GOC)
and ordinal bin for each type of features.

2. OUR PROPOSED DESCRIPTOR

To give an overall impression of the proposed descriptor, it-
s construction framework is briefly stated here. First, we
preprocess the image with Gaussian blur, detect ROI using
Hessen-Affine detector [10], and normalize ROI. Then, we
make use of the overall intensity order to divide a certain ROI
into sub-regions called ordinal bins, which is similar to region
division in [6]. Next, multiple gradient-related features (M-
GRF) based on local and overall order encoding of each pixel
in every ordinal bin is obtained. Last, the MGRF descriptor is
constructed by accumulating the MGRF of all pixels in each
ordinal bin respectively, then by concatenating them togeth-
er. The following subsections give a detailed description of
the process of constructing our descriptor, mainly including a
novel sampling pattern of tree structure, extraction of multi-
ple gradient-related features, as well as both local and overall
order encoding for each type of the proposed features.

2.1. Sampling Pattern of Tree Structure

Before effective integration of the proposed gradient-related
features, it is necessary to establish a new sampling pattern of
tree structure shown in Fig.1(a), where nodes in each level are
printed in the same color. Each node in tree structure repre-
sents a certain pixel in ROI. Specifically, the one-level node,
known as the root node, denotes one of the original pixels
in ordinal bins after region division [6]. Two-level nodes are
those pixels sampled on circles with a certain radius centred
at root node. Likewise, k-level nodes can be obtained respec-
tively by sampling on circles with a certain radius centred at
each of (k− 1)-level nodes, where k = 2, ..., N , and N is the
total levels of tree structure. As shown in Fig.1(a), each node
in tree structure has four child nodes which can be used to
compute the gradient orientation of the corresponding parent
node.

In the following, we will simply set N as 3 to further de-
scribe the specific sampling method. The corresponding co-
ordinate system established is shown in Fig.1(b), where the
sampling points are denoted in the same color as the corre-
sponding nodes in tree structure in Fig.1(a). In details, one-
level node, two-level nodes, and three-level nodes respec-
tively correspond to the primitive sampling point, sampling
points, and sub-sampling points, which are labeled as charac-
ters with the corresponding color.

In Fig.1(b), P is an interest point and Xi is the i-th prim-
itive sampling point. Then a local coordinate system can be
established by setting vector

−−→
PXi as the positive y-axis and

the positive x-axis is determined through the positive y-axis
rotating 90 degrees in a clockwise order. The four sampling

(a) Sampling pattern of tree structure

(b) Local coordinate system (N = 3)

Fig. 1. Sampling pattern of tree structure and its correspond-
ing local rotationally invariant coordinate system (N = 3).

points Xj
i , (j = 1, 2, 3, 4.) around Xi are equally distributed

on a circle with radius R centred at Xi. We set the intersec-
tion point between the positive x-axis and the circle bound-
ary as the first sampling point X1

i and subsequent sampling
points are X2

i , X
3
i , X

4
i in anticlockwise order as shown in

Fig.1(b). Furthermore, three-level nodes, that is to say, sub-
sampling points around sampling point Xj

i , (j = 1, 2, 3, 4.)

can be denoted as Xjp
i , (p = 1, 2, 3, 4.) where j represents

the j-th sampling point around pixel Xi, and p denotes the p-
th sub-sampling point for the sampling point Xj

i . The four
sub-sampling points Xjp

i are equally distributed on a sub-
circle with radius subR centred at Xj

i , and their positions can
be determined in the way similar to the determination of the
sampling point Xj

i .
As shown in Fig.1(b), the construction of local coordi-

nate system here is the special case in sampling pattern of tree
structure where N = 3. When N increases, we can further
extend the coordinate system with extra sampling points cen-
tered at each of nodes in the previous level of tree structure.
Based on the extended coordinate system, a more informative
feature can be extracted, which makes our descriptor have a
more discriminative ability, unfortunately accompanied with
the higher amount of calculation and weaker capability of re-
sisting localization errors and noises. The performance of our
method when N = 3 is satisfactory, and thus we use the co-
ordinate system in Fig.1(b) to construct our descriptor.

2.2. Multiple Gradient-Related Features

As mentioned above, we can directly extract our features on
the local coordinate system in Fig.1(b). Of course, we can
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extend our extration method to the general case. When N in-
creases, tree structure can be divided into a certain number of
subtrees with the depth of 3, based on which we compute our
proposed features.Specifically, when N = 4, in tree structure
there are five subtrees with the depth of 3, which are labeled as
triangles with dashed line in the same color as the correspond-
ing root node in each subtree as shown in Fig.1(a). Features
can be extracted respectively based on each subtree, which
indicates the completely similar process of feature extraction
when N grows up.

The proposed features include multidirectional gradient,
gradient orientation and first derivative of gradient orienta-
tion.We take the subtree containing the root node Xi for in-
stance to describe the calculation procedure for each type of
features.

For Xi in Fig.1(b), we can define multidirectional gradi-
ent using four sampling points X1

i , X
2
i , X

3
i , X

4
i around Xi

as
Gk

i = Xk
i −X

(k+1)%4
i , k = 1, 2, 3, 4. (1)

where Gk
i denotes the k-th direction gradient of Xi in one

ordinal bin, and % represents mod operation.
Gradient orientations of four sampling points are defined

as

Oj
i = arctan

Xj1
i −Xj3

i

Xj2
i −Xj4

i

, j = 1, 2, 3, 4. (2)

where Oj
i represents the gradient orientation of j-th sampling

point of Xi in one ordinal bin.
The first derivative of gradient orientation of four sam-

pling points is equal to the difference value of the gradient
orientations between two neighboring sampling points. Sup-
posing that DOj

i denotes the j-th difference value between
gradient orientations of sampling points around Xi in one or-
dinal bin, then

DOj
i = Oj

i −O
(j+1)%4
i , j = 1, 2, 3, 4. (3)

It needs to note that although the Equ.1,2, and 3 are for-
mulated based on the subtree including the root node Xi,
these equations can be applied to all other subtrees with the
depth of 3 in tree structure when N ≥ 4.

2.3. Encoding of Multiple Gradient-Related Features

Once three local features of all pixels in each ordinal bin are
obtained, we can respectively encode them with both local
and overall order information.Considering the similar encod-
ing process in [6] and [9], we only take multidirectional gra-
dient for instance.
• Local encoding: First, we sort multidirectional gradi-

ents of all sampling points around a pixel in a non-descending
order and obtain the index list that represents the ranking
of multidirectional gradients. Then, the index list is consid-
ered as a permutation Π and one-to-one mapping is estab-
lished between the permutation Π and the corresponding in-
dex Ind(Π) that is called local gradient order code (GOC).

Finally, a feature vector, whose elements are all 0 except the
Ind(Π)-th element which is 1, is obtained.
• Overall encoding: First, we sort multidirectional gra-

dients of all sampling points around all pixels in all ordinal
bins in a non-descending order to obtain their overall order.
Then, we quantize their overall orders into C levels and get
quantization values of multidirectional gradients of all pixels
through quantization thresholds. Next, for each pixel in ev-
ery ordinal bin, we can obtain a base-C number with a certain
length by concatenating them together, which will be convert-
ed into a decimal number that is named as overall GOC. Last,
a feature vector, whose elements are all 0 except the element
corresponding to the decimal number which is 1, is obtained.

For two other features, following the same encoding pro-
cess, we can obtain the respective feature vectors.The three
types of features embody different aspects of sampling points
and thus capture the complementary information.We con-
catenate three feature vectors obtained by local encoding
and call the combined feature vector local multiple gradient-
related features (LMGRF). Likewise, three other feature
vectors obtained by overall encoding are concatenated as a
complete feature vector, which is named as overall multiple
gradient-related features (OMGRF). In addition, considering
that LMGRF and OMGRF encode different ordinal infor-
mation, which implies that they might have a certain degree
of complementarity, and thus we further cascade LMGR-
F and OMGRF into a whole feature vector called multiple
gradient-related features (MGRF) to improve performance.In
the end, we accumulate MGRF of all pixels in each ordinal
bin respectively and obtain the histograms for every ordinal
bin. The MGRF descriptor can be formed by concatenating
all histograms.

3. EXPERIMENTS

3.1. Dataset and Evaluation Criterion

We evaluate our descriptors on standard Oxford image match-
ing dataset [11]. This dataset consists of six different geomet-
ric and photometric transformations, including image blur, s-
cale change, image rotation, JPEG compression, illumination
change and viewpoint change. And we use the evaluation cri-
terion proposed by Mikolajczyk and Schmid [1]. The match-
ing strategy is the nearest neighbor distance ratio (NNDR).
Judging whether a match is correct is determined by the over-
lap error [12]. If the overlap error < 0.5, then the match is cor-
rect. The results are presented with recall versus error curves,
where error=1-precision, and error is used as the title of the
horizonal axis of recall versus 1-precision curves in replace
of 1-precision shown in Fig.2.

3.2. Performance Evaluation

We compare our descriptor with DAISY [4], HRI-CSLTP [5],
LIOP [6], MROGH [7], MRRID [8], and MIOP [9] descrip-
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(a) bikes 1-2 (b) bikes 1-6 (c) boat 1-2 (d) boat 1-4 (e) ubc 1-5

(f) ubc 1-6 (g) leuven 1-3 (h) leuven 1-5 (i) graf 1-3 (j) graf 1-5

Fig. 2. Experiment results under various image transformations in Oxford dataset for Hessen-Affine region detector. “1-j” in
caption of each sub-figure represents the image pair between the 1-st and j-th image in one image set, and j ∈ {2, 3, 4, 5, 6.}

tors. To be fair and representative, we utilize Hessian-Affine
detector [10] to detect ROI and meanwhile adopt one support
region for all the descriptors in the experiments. Furthermore,
all the descriptors are extracted using parameters suggested
by authors. As to our MGRF descriptor, the setting of com-
mon parameters follows the suggestions of the previous work
in [9]. Meanwhile, a new parameter is introduced to represent
sub-sampling radius of the sampling points around pixel Xi

in one ordinal bin. As shown in Fig.1(b), sub-sampling radius
is denoted as subR, which is set as 3 in this paper.

We test our descriptor using all the image sequences in the
dataset. Due to the limited length of the paper, we only show
the evaluation results of partial image pairs in Fig.2, which
involve different image transformations. From the results, we
can see that the recall versus error curves of our descriptor
are always above those of other tested descriptors in all cases.

Meanwhile, to make quantitative comparisons more con-
vincing, we introduce area under curves (AUC) to represent
the area formed by the recall versus error curve and the hor-
izontal axis. The larger AUC means the better performance
of the corresponding descriptor. Detailed results are shown
in Tab.1, where each element denotes the average AUC of all
image pairs in a certain type of image sequences for the spe-
cific descriptor. From Tab.1, we can see that the AUC of our
descriptor is larger than those of other descriptors in terms of
each image sequence and the average of all image sequences.

From comprehensive results of Fig.2 and Tab.1, we can
conclude that our descriptor outperforms all other descriptors
in all cases. Superior performance in illumination changes
(leuven 1-3,1-5) and rotation and scale changes (boat 1-2,1-
4) demonstrates the effectiveness of aggregating order into
gradient-related features. Meanwhile, good performance in

Table 1. AUC comparisons for different descriptors

Descriptors
Image Sequences in Oxford dataset

bikes boat ubc leuven graf wall average

HRI-CSLTP[5] 0.7595 0.6310 0.8748 0.7840 0.4915 0.5297 0.6889
DAISY[4] 0.7768 0.6103 0.8507 0.6463 0.4836 0.6004 0.6613
LIOP[6] 0.8772 0.6211 0.9061 0.8324 0.5236 0.6252 0.7309

MROGH[7] 0.7786 0.5432 0.9064 0.6856 0.4422 0.5459 0.6503
MRRID[8] 0.7511 0.4613 0.8185 0.7332 0.3775 0.4685 0.6017
MIOP[9] 0.8751 0.6854 0.9214 0.8574 0.5799 0.7372 0.7761
MGRF 0.9200 0.7315 0.9455 0.8815 0.6192 0.7464 0.8073

terms of image blur (bikes 1-2,1-6) and JEPG compression
(ubc 1-5,1-6) indicates the fact that gradient-related features
can preserve more detailed local contrast and edge informa-
tion and improve the discriminative ability.

4. CONCLUSION

In this paper, three types of gradient-related features are in-
troduced for local feature description. Each of these features
represents different aspect of ROI. Meanwhile, we propose a
novel sampling pattern of tree structure to extract them. Fur-
thermore, by aggregating both local and overall order infor-
mation into each type of these features, we can see that our
descriptor has both highly discriminative ability and strong
robustness. Therefore, we achieve superior performance in il-
lumination changes and rotation and scale changes, as well as
image blur and JEPG compression. Experiment results have
shown that our proposed descriptor outperforms all the other
state-of-the-art methods under various geometric and photo-
metric image transformations.
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