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ABSTRACT

In this paper, a new perspective of congestion is presented
to promote the development of traffic video analysis. Our
main contributions are threefold: a) An unified and quantifi-
able definition of congestion is proposed to describe the traffic
state in video. b) Based on the definition, a congestion dataset
which contains multiple traffic scenes is constructed as a plat-
form for the research community. At the same time, a precise
labeling method is introduced to get the ground truth of con-
gestion level accurately. c) An algorithm based on Inverse
Perspective Mapping (IPM) and pairwise regression is pro-
posed to analyze traffic videos and serves as a baseline. We
further compare the proposed method with two deep learning
methods. Intensive experiments justify the effectiveness of
the proposed method.

Index Terms— Traffic video, image understanding, sig-
nal processing, congestion detection

1. INTRODUCTION

Traffic congestion analysis has attracted increasing attention
because of the congested traffic status [1]. As the develop-
ment of society, traffic congestion has become a common phe-
nomenon around the world. Many accidents occur and time is
wasted on the road under this circumstance. If we can get an
understanding of traffic congestion level automatically, it will
be easier to manage the traffic. Since the camera is mounted
almost every corner of the cities, it is possible to achieve it by
analyzing the videos in these cameras.

However, given some video data, how to analyze conges-
tion level is a challenging task. The illumination variations,
the stopped vehicles, the changes of heights and angles of
cameras, and the different road conditions make the conges-
tion traffic hard to analyze.

Many algorithms have been proposed to remedy the con-
gestion detection problem but most of these works can only
solve the congestion detection in a specific scene. Besides,
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Fig. 1. The proposed definition is based on the time-space
congestion.

many algorithms rely on background subtraction which is in-
sensitive to stopped vehicles and the vehicles far from camer-
a. Moreover, the literatures seldom consider the perspective
transformation which can seriously affect the stability of con-
gestion level. All these problems limit the usage of congestion
detection in real applications.

The fundamental reason of these problems is the defini-
tion. How to define congestion in a unified, quantifiable way
is the key to solve congestion detection. In this paper, we
first propose an appropriate definition of congestion. Then, a
dataset containing different scenes is constructed to serve as
the platform for the research community. Based on the pro-
posed definition, we precisely label the congestion level of the
frames in the dataset. At last, we propose a congestion lev-
el detection algorithm with respect to the proposed definition
and dataset.

2. RELATED WORK

We briefly review some congestion detection methods in this
section. Existing algorithms can be divided into two class-
es. One is based on the detection or segmentation of moving
objects (mainly vehicles). Another is based on the feature ex-
traction of frames or videos.

The motivation of the first class is simple and straight-
forward: more vehicles indicate more congested traffic. For
example, [2, 3] propose two algorithms which classify con-
gested traffic videos based on the segmentation of moving ve-
hicles on lanes. Both of them utilize the pixel number of ve-
hicles and the speed of pixels as features. The calculation of
pixel number relies on foreground detection [4, 5, 6] or other
techniques to detect or segment moving objects. The speed of
vehicle is calculated by tracking methods, such as optical flow
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[7, 8] and Kanade-Lucas-Tomasi (KLT) [9]. Firstly, many ve-
hicles can not be detected when they stop or move slowly, and
the vehicles far from the camera are small and hard to detect.
These problems affect the detection of vehicles and then re-
sult in poor performance. Secondly, velocity of vehicle will
be affected by perspective transformation, but these methods
seldom consider that.

Another class of methods are based on congestion relat-
ed features extraction and classification. Motivated by visual
dynamics, [10] proposes a system including Spatiotemporal
Orientation Analysis as features. To encode the motion in-
formation, [11] proposes a motion vector statistical feature to
detect traffic congestion. Symbolic representation is anoth-
er feature proposed in [12] which combines appearance and
motion clues together. These methods don’t rely on object
detection as preprocessing, but the classification results de-
pends on the accurate labeling since most algorithms divide
congestion videos into 2-5 levels which is inaccurate for real
applications.

3. THE PROPOSED DEFINITION AND DATASET

To remedy the problems mentioned above, we first define
what is congestion and how to calculate it. Then, we con-
struct a dataset for the task.

3.1. Definition

Generally, congested traffic condition can be measured by t-
wo aspects: spatial congestion and temporal congestion. The
spatial congestion (i.e. occupancy) is the area between vehi-
cles and road at a particular time. The temporal congestion
(i.e. density) is often detected by loop detector [13]. It is cal-
culated by the percent of time a point on the road is occupied
by vehicles. The occupancy can only represent the conges-
tion level at a point of time. The density can only represent
the congestion level at a point of space. Both of them are
one-sided. In this paper, we define congestion in the domain
of time-space. As shown in Figure 1, the occupancy, density
and the proposed congestion can be seen as the ratio of vehi-
cles in the area with shadow.

Formally, given an video clip, we define

f(x, y, t) =

{
1, occupied
0, not occupied

(1)

where x, y refer to the position in one frame, and t is the
time of that frame in video. The f(w, h, t) can indicates that
whether a point at the frame is occupied by a vehicle.

Then, the congestion can be formally expressed as:

congestion =

∑
x,y,t

f(x, y, t)

width× height× time
(2)

where congestion ∈ (0, 1) indicates congestion level.

Fig. 2. Typical images in the proposed congested scene
dataset.

3.2. Dataset and Labeling

Since there exists no available data for multiple scenes con-
gestion detection, we construct a dataset which contains mul-
tiple conditions. We first collect 6 videos on different road-
s which contain 2-4 lanes. Typical images of these scenes
can be seen in Figure 2. The resolution of these videos are
1080 × 720. The average length of these videos is 30 min-
utes.

Since the labeling is not precise in the previous works,
we propose a more accurate and quantifiable labeling method
based on the proposed definition. To accurately label the con-
gestion level, we have to segment every vehicle on the road,
which is very time-consuming. To simplify the labeling, we
suppose that the length of a vehicle is equal to the length of
lanes. This is reasonable since most of the vehicles are mov-
ing along the lane. Based on this assumption, Equation 2 can
be reduced to:

congestion =

∑
y,t
f(y, t)

height× time
. (3)

With this simplified definition, we only have to draw lines
on vehicles to represent the length of them. Then, the conges-
tion can be automatically calculated. Note that we skip every
10 frames when labeling, and others are calculated with linear
interpolation.

4. OUR METHODS

With the definition and dataset, we propose a system to detect
congestion level. We first consider the perspective transfor-
mation which is essential when multiple scenes are consid-
ered. Based on this, texture is utilized as low level features
since it is more stable across different scenes through the ex-
periment. At last, pairwise linear regression is included for
the final congestion detection. The pipeline of the proposed
method is shown in Figure 3.

4.1. Inverse Perspective Mapping

How to detect congestion level in videos which have different
angles and lane numbers is the main problem. To remedy this,
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Fig. 3. The pipeline of the proposed method.

an Inverse Perspective Mapping (IPM) method [14] is utilized
to remedy the effect of perspective transformation. Note that
the region of interest (i.e. road) is predefined in the study.
Typical results can be seen in Figure 4.

4.2. Texture Feature Extraction

Based on the IPM, we split the transformed image into several
sub-regions. Then, we extract texture features in all regions.
At last, all these features in sub-regions are concatenated as
the final representation.

Most previous work utilized key point or the segmentation
of moving objects as low-level features. However, these fea-
tures will be highly affected by the change of camera angles
and lane numbers. The texture on roads is more stable across
different scenes through the experiment, thus we utilize tex-
ture as low-level features.

As shown in Figure 4, the top and bottom of the trans-
formed images have different textures. That is the motiva-
tion of why we split the transformed image into sub-regions.
Then, the texture feature is extracted in each sub-region. At
last, these features are concatenated to form the final repre-
sentation. Note that, the LBP [15] is utilized to extract texture
feature.

4.3. Pairwise Regression

After feature extraction, the congestion level can be calculat-
ed by regression. Since the congestion level won’t change
much between adjacent frames, a pairwise regression is pro-
posed to model that relationship.

Given a feature vector extracted in an image, the conges-
tion level can be calculated by linear regression which is for-
mulated as: ŷ = wx, where ŷ is a real value which indicates
the congestion level, x refers to final representation, and w is
the parameter.

Given n pairs of feature representations of two adjacen-
t frames X = {x1, x2, x3, ..., x2n} and the corresponding
labels (i.e. congestion level) Y = {y1, y2, y3, ..., y2n}, the
parameters can be learned by minimize the loss function be-
low:

loss = ‖Xw − Y ‖2 + λ‖X1w −X2w‖2

= ‖Xw − Y ‖2 + λ‖w‖2
(4)

where X1 = {x1, x2, x3, ..., xn} and X2 = {xn+1, xn+2,
xn+3, ..., x2n}. Note that, xi and xn+i are representations
of two adjacent frames. This is a ridge regression problem
which can be solved by analyzing the ridge trace [16].

5. EXPERIMENTS

To confirm the effectiveness of the proposed method, exten-
sive experiments are conducted. Since there exists no dataset
for multiple scenes congestion detection, the experiments are
performed only on the proposed dataset. The effect of IPM
is evaluated at first. Then, the effectiveness of texture feature
is confirmed. At last, the proposed method is compared with
two deep learning methods.

5.1. Experimental Settings and Evaluation Protocol

The whole dataset has 6 different scenes. We extract 5000
frames for training and 1500 images for testing in each scene.
In experiments, we split the transformed images into 32 sub-
regions when we extract texture features. After that, the LBP
feature [17] is extracted in each sub-region. The λ is set as 10
through the analysis of ridge trace.

Most previous works solve it as a classification problem
[18] and the performance is evaluated by accuracy. Since our
labeling is more precise (a real value instead of a class label),
we solve it as a regression problem. Thus, the Mean Squared
Error (MSE) is included as the evaluation protocol which can
be calculated as:

mse =
1

2n

n∑
i=1

(Ŷi − Yi)2 (5)

5.2. The Effect of IPM

Since different scenes contain different camera angles and
lane numbers, how to eliminate the variations among different
scenes is the key problem of the traffic congestion detection.
The IPM is employed to remedy this problem.

To confirm the effectiveness of IPM, we compare the pro-
posed method to the algorithm without IPM. As the results
shown in Figure 5, the error bar with IPM is lower than the
error bar without IPM which means the performance of the
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Fig. 4. Typical results of IPM.

method with IPM is superior to the other algorithm. Since we
utilized MSE as evaluation protocol, the lower MSE indicates
better performance.

After IPM, the difference among scenes has been reduced
which eliminates the variation between different scenes. Fur-
thermore, the effect of background has been reduced as well
which makes IPM effective.

5.3. The Effectiveness of Texture Features

After IPM, the transformed image is split into sub-regions and
then the texture feature is extracted. The congested traffics
in different scenes have similar texture. Thus, the texture is
included as low-level features since it is more stable among
different scenes.

We compare the texture feature to the key point number
and the color features. The key points in images are first de-
tected by Harris Corner detector [19]. Then, the number of
key points is treated as the feature representation. Besides,
the histogram of color is used as color features.

The experimental result is shown in Figure 5. The perfor-
mance of texture feature is superior to the key point number
and the color features, no matter with or without IPM. The key
point is hard to detect in low-light condition. Thus, the point
number will be affected by the light condition. Although the
color of vehicles is different to the color of road, the color of
vehicles is arbitrary. Thus, it is hard to distinguish different
congestion level via color features.

5.4. Comparison with Deep Learning

Deep learning has show its potential in many tasks including
image classification, object detection, etc. We compare the
proposed method with two end-to-end deep learning methods.
The first deep network is a minor variation of AlexNet [20].
The second network is proposed in [21], namely CNN-LSTM.

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016
0.018

key points color texture

m
ea

n 
sq

ua
re

 e
rro

r

features

without IPM with IPM

Fig. 5. The experimental results of different features with or
without IPM.

Methods CNN CNN-LSTM ours
MSE 0.002 0.0025 0.0015

Table 1. The comparison with deep learning methods.

The LSTM is included in this network to encode temporal
information. Note that we change the last classification layer
to regression layer in both networks.

The experimental result is shown in Table 1. We can see
that the performances of deep learning methods without care-
ful design are worse than conventional method. Furthermore,
the CNN-LSTM with temporal information encoded is worse
than the simple CNN. The reason is that the label of conges-
tion detection is too weak. Under this circumstance, the label
is hard to guide the networks to learn reasonable information,
and a more complex network makes the learning more diffi-
cult. That is why the performance of the CNN-LSTM is worse
than the simple CNN.

6. CONCLUSION AND FUTURE WORKS

Most algorithms treat congested video analysis as a classifi-
cation problem and only one scene is considered in literature.
However, a real application should be a regression problem
since the congestion is continuously changed. Furthermore,
multiple scenes should be considered since it is hard to train
multiple regression models for different cameras. To remedy
the multiple congested video analysis as a regression prob-
lem, a quantifiable and unified definition of congestion is first
introduced. Based on the definition, a multiple scenes traffic
congestion dataset is constructed to serve as a platform for the
community. Then, an IPM based algorithm is proposed as a
baseline to congestion analysis.

Since the deep learning method do not work well, a
stronger label including the position of vehicles and a care-
fully designed deep network shall be exploited in the future.
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[17] Matti Pietikäinen, “Local binary patterns,” Scholarpe-
dia, vol. 5, no. 3, pp. 9775, 2010.

[18] Yuan Yuan, Jia Wan, and Qi Wang, “Congested scene
classification via efficient unsupervised feature learning
and density estimation,” Pattern Recognition, vol. 56,
pp. 159–169, 2016.

[19] Chris Harris and Mike Stephens, “A combined corner
and edge detector,” in Proceedings of the Alvey Vision
Conference, 1988, pp. 1–6.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in Advances in Neural Information
Processing Systems, 2012, pp. 1106–1114.

[21] Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarra-
ma, Marcus Rohrbach, Subhashini Venugopalan, Trevor
Darrell, and Kate Saenko, “Long-term recurrent con-
volutional networks for visual recognition and descrip-
tion,” in IEEE Conference on Computer Vision and Pat-
tern Recognition, 2015, pp. 2625–2634.

1402


