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ABSTRACT

We designed and created a new video database that models
a variety of complex distortions generated during the video
capturing process on hand-held mobile capturing devices. We
describe the content and characteristics of the new database,
which we call the LIVE Mobile In-Capture Video Quality
Database. It comprises a total of 208 videos that were cap-
tured using eight different smart-phones and were affected
by six common in-capture distortions. We also conducted
a subjective video quality assessment study using this data,
wherein each video was assessed by 36 unique subjects.
We evaluated several top-performing No-Reference IQA and
VQA algorithms on the new database and find insights on
how real-world in-capture distortions challenge both human
subjects as well as automatic perceptual quality prediction
models.

Index Terms— mobile videos, in-capture video distor-
tions, perceptual video quality, subjective quality assessment.

1. INTRODUCTION

The explosive growth of digital media has accelerated in re-
cent years, owing to the ubiquitous availability of portable
mobile devices for video capture and access. On YouTube
alone, half of the billions of daily video views are received
on mobile devices [1]. Every viewed digital video typically
passes through several processing stages during and after its
capture before ultimately reaching a human observer. Dif-
ferent forms of distortion can be introduced during video
acquisition, transmission, and rendering processes, each of
which in turn could impact an end user’s quality of experience
(QoE). The quality of a digital video (or a digital picture) as
perceived by human observers is referred to as ‘perceptual
quality.’

Subjective Video Quality Assessment (VQA) studies,
though time-consuming and cumbersome, are crucial for
understanding humans’ perceived quality of digital videos
[2–6]. They also assist in the development of objective,
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automatic quality predictors, whose ultimate goal is to accu-
rately predict perceived video quality. Subjective studies also
provide valuable data that makes it possible to evaluate the
performance of video quality predictors. Automatic quality
predictors can be used to identify and cull low quality videos
stored on digital devices and to prevent their occurrence using
suitable quality correction processes during capture. More
importantly, video quality predictors can be used to objec-
tively measure and benchmark the camera and lens quality of
emerging mobile devices and thereby drive “quality-aware”
camera design strategies. These and other significant and
potentially impactful benefits have greatly accelerated the
development of objective video quality models.
Relation to state-of-the-art: Most of the existing video qual-
ity databases [2–5] model post-acquisition distortions such
as encoding (compression) artifacts, transmission errors, and
rebuffering events [7]. These databases contain videos cap-
tured using high-end cameras that have been impaired by one
of a few synthetically introduced distortion types at a level
of perceptual distortion chosen by video quality scientists.
Though these databases have tremendously accelerated the
development of VQA algorithms [8–13], they do not model
in-capture distortions, such as texture distortions, artifacts
due to exposure and lens limitations, focus, and color aber-
rations. We refer to these naturally occurring distortions
as authentic, in-capture distortions. The majority of the
mobile digital videos that are produced by casual, inexpert
mobile users ostensibly suffer from in-capture, authentic dis-
tortions as opposed to single, separable post-capture distor-
tions alone. Some of these distortions have previously been
explored, using objective criteria, and there exist models that
attempt to characterize some of these distortion effects, e.g.,
color [14], sharpness [15], noise and other artifacts [8, 16].
However, there does not yet exist a standardized methodology
that can successfully evaluate multiple aspects of in-capture
video distortions across diverse mobile devices. Our new
database is a powerful tool for developing and evaluating
such methodologies.

To the best of our knowledge, we are aware of only one
other recently designed database [6] that models in-capture
distortions. The videos in CVD2014 [6] were captured us-
ing 78 different cameras, all used in automatic mode. The
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quality of the cameras used varied from low-quality mobile
phone cameras to dedicated video and high-quality digital
single lens reflex (DSLR) cameras. Videos from different de-
vices were captured one at a time sequentially and were later
edited by the database creators to be as similar as possible
with respect to the video content.

While the CVD2014 database has great broad potential,
capturing videos in completely uncontrolled settings, with no
preset goal or information about the type of intended distor-
tion will not allow us to deepen our understanding of the ef-
fects of specific distortion types and the performance of dif-
ferent mobile devices on an end user’s QoE. Some distortions
occur more frequently than others (exposure and color-related
distortions, for instance). To design reliable models and algo-
rithms for evaluating such distortions, databases are needed
that contain videos that were specifically captured to repre-
sent those specific distortions.

Our goal was to strike a balance between a completely
uncontrolled collection of in-the-wild videos (as done in [6])
and a systematic generation of singly distorted videos. To-
wards this end, we captured videos with intended “dominant”
distortion types in mind, such as focus, color artifacts, and
so on using a predetermined set of mobile camera devices.
However, the captured videos could be afflicted by other unin-
tended distortions, such as underexposure, or low-light noise
if captured during the night. We did not try to avoid these
unintended distortions; however we assigned each video to a
group according to what we determined to be the most domi-
nant distortion present in the video based on visual inspection.
We will describe our choice of dominant distortion categories
and their purpose with regards to our subjective study in Sec.
2.1. Further, we will describe the set-up we used to capture
videos with significantly overlapping content, which allows
for objectively comparing scenes across mobile devices and is
another distinguishing feature of the proposed database over
the CVD Database [6].

2. THE LIVE MOBILE IN-CAPTURE VIDEO
QUALITY DATABASE

2.1. Video Sequences

Figure 1 show a sample of scenes from the LIVE Mobile In-
Capture Video Quality Database. This database consists of a
total of 208 videos, each of which is categorized into one of
the following six video groups:

1. Artifacts: Videos afflicted by noise, blockiness, and other
such distortions that are not part of the video content.

2. Color: Videos with incorrect or insufficient color repre-
sentation.

3. Exposure: Videos containing over/under-exposed regions,
making it difficult to see parts or the entirety of the scene.

4. Focus: Videos afflicted by autofocus related distortions,
i.e., that are intermittently sharp or blurry over time.

Fig. 1. Sample video frames from the LIVE Mobile In-Capture
Video Quality Database.

5. Sharpness - Videos suffering from general unsharpness,
i.e., lack of detail, texture, or sharpness.

6. Stabilization - Videos where the affects of camera shake
overwhelm the content.

To be able to evaluate different camera devices across in-
capture distortions, the new database was designed to meet
the following requirements:(1) There should be an overlap
of video content across different devices, and clips for any
content should be spatially and temporally aligned; and (2)
distortion severity and visibility should be perceptually sepa-
rable for each content.
Video capture process: To satisfy these conditions, the
videos were captured using a rig that holds four devices at
once to simultaneously capture near-identical content under
the same illumination conditions and from similar viewing
angles. Since each phone’s field-of-view is different, the
phone positions on the rig were manually adjusted so that
each group of four phones captured nearly identical scenes.
The videos were captured using the default settings on the
phones, and the touch-to-focus feature was never used. All
videos were captured at 1080p resolution.

Segments of fifteen seconds in duration were selected (af-
ter removing the audio) and edited to length based on distor-
tion relevance, content variability, and interest, while main-
taining as much temporal alignment as possible. The con-
tents providing adequate perceptual separability were selected
and expertly categorized into one of the six categories based
on the most dominant distortion apparent in the clips. The
breakdown of capture devices and distortion categories for
the videos are given in Table 1. The eight devices used for
capture were some of the most widely-used mobile devices
during the time of video content acquisition.

2.2. The Subjective Study

Unbiased and biased subject groups: The goal of our sub-
jective study was two fold: (a) obtain overall subjective qual-
ity scores recorded by humans viewing naturally-occurring
in-capture video distortions, and (b) for each of the six dis-
tortions under consideration, obtain opinion scores assessing
how much each particular distortion affected a subject’s per-
ceived quality. Towards this end, the participating subjects
were randomly divided into two groups: (a) a biased group
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Table 1. Number of videos per phone and distortion (A: Artifacts;
C: Color; E: Exposure; F: Focus; Sh: Sharpness; St: Stabilization)

Phone A C E F Sh St Total
Galaxy GS5 2 3 3 4 6 4 22
Galaxy GS6 8 6 5 6 3 5 33

HTC One VX 8 6 5 6 2 5 32
iPhone 5S 1 3 4 3 6 4 21

LG G2 7 6 5 5 3 5 31
Lumia 1020 2 2 3 2 4 3 16

Samsung Note 4 1 3 4 3 7 4 22
Oppo Find 7 7 6 5 5 3 5 31

Total 36 35 34 34 34 35 208

and (b) an unbiased group. Subjects who were assigned to the
biased group were informed a priori which type of distortion
to focus their attention while viewing the videos (from the 6
distortions listed earlier). The biased subjects were asked to
evaluate each video’s perceptual quality, given that the video
was afflicted with that particular distortion. This task, includ-
ing the particular distortion the subject was to pay attention
to, was displayed on the screen before each distortion-specific
test session.

Subjects belonging to the unbiased group were not asked
to attend to any particular distortion, i.e., no prior informa-
tion about the afflicting dominant distortion was provided to
them. Instead, they were asked to evaluate the overall percep-
tual quality of each video (presented at random). However,
since these distortions are perceptually subtle, we also wanted
to understand the distortion that dominated their quality per-
ception, thereby their quality score. Therefore, once the sub-
jects provided their opinion score for a video, another screen
appeared where each subject had to select the distortion that
dominated their judgment from a list of seven options (the six
distortions mentioned earlier and a seventh option ‘no domi-
nant distortion was perceived’).
Study duration and display details: Each subject completed
three sessions of approximately 30 minutes each. Each biased
session consisted of two 15-minute halves, each focusing on
one of the six distortions. Each unbiased session was an unin-
terrupted 30 minute session, during which videos from any
of the six distortions were randomly displayed. A subject
was shown each test video in the database exactly once and
the playlist order was randomized for each subject such that
videos of the same content were not presented consecutively.

We designed the user interface using the XGL tool-
box [17] with MATLAB 2015b on a Windows PC with an
ATI Radeon X600 graphics card. Each video sequence was
stored in raw YUV 4:2:0 format and loaded in its entirety
into memory before displaying to subjects in order to avoid
playback latencies. The video sequences were displayed on
an ASUS VG248QE monitor in their native 1920 × 1080
resolution. All videos had a frame rate of 30 Hz and we set
the monitor refresh rate to 60 Hz to avoid flicker artifacts, so
each frame was displayed for two monitor refresh cycles.

Fig. 2. The continuous rating bar that was displayed to the subjects
after each video.

Following the presentation of each video, a rating screen
with instructions on how to select and submit the quality
score was displayed. This continuous rating bar (Fig. 2)
is divided into five equal portions, labeled Bad, Poor, Fair,
Good, and Excellent, to reflect the ITU-R Absolute Category
Rating (ACR) scale [18]. Subjects used a mouse to move the
slider on the quality scale to their desired rating, and they
were allowed to press any key, excluding the escape key, to
submit their score. Biased subjects were instructed to take ap-
proximately 10 seconds to submit their scores, and unbiased
subjects were instructed to take approximately 15 seconds
to submit both their quality rating and their ‘dominant dis-
tortion’ selection. Subjects were not allowed to go back and
change their score once they submitted it.
Subjects and Training A total of 39 subjects (undergraduate

and graduate students at the University of Texas at Austin)
were recruited and split into biased (19) and unbiased (20)
groups. At the beginning of each session, each subject read
instructions that included descriptions of the distortions they
might see in the videos. The viewing distance was about 2
- 2.5 feet, which was deemed as a comfortable distance, and
we asked subjects to approximately maintain their viewing
position throughout the study.

Preceding each 15-minute distortion-focused biased ses-
sion, subjects watched three to four training videos of a single
content (captured using different devices), containing enough
perceptual separability to help them understand how the rel-
evant distortion manifests in a video. Unbiased subjects
watched six to seven training videos preceding each of the
30-minute sessions. The videos were of random content and
spanned the six distortion categories. The training sessions
were primarily intended to help subjects become familiar
with the testing procedure, the interface, and the distortions.
The training videos were also 15 second long, were captured
using the same rig and expertly categorized according to the
dominant distortions afflicting them. At the end of all three
sessions, each viewer answered a short questionnaire regard-
ing what they found to be the most annoying, hardest to detect
distortions, and their engagement levels during the study.

3. SUBJECTIVE DATA ANALYSIS

3.1. Processing the Subjective Scores

If we let sijk denote the raw score assigned by subject i to
video j during session k, we can compute Z-scores [19] zijk
to account for each subject’s variability in their use of the
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Fig. 3. Scatter plot of the MOS values obtained from the biased
group (left) and the unbiased group (right) on all the videos in the
LIVE In-Capture Mobile Video Database.

quality scale during each session:

µik = 1
Nik

∑Nik

j=1 sijk

σik =
√

1
Nik−1

∑Nik

j=1 (sijk − µik)
2

zijk =
sijk−µik

σik

where Nik is the number of test videos seen by subject i in
session k. Note that k = 3 for both the biased and unbiased
groups. Since biased subjects complete two 15-minute ses-
sions back-to-back, we consider their use of the quality scale
to be similar in those two sessions. We followed the subject
rejection procedure detailed in the ITU-R BT.500-11 recom-
mendation [18] using the Z-scores and rejected 3 subjects—
1 biased and 2 unbiased, leaving the scores from 18 biased
and unbiased subjects for analysis. As was done in [2], the
Z-scores were linearly rescaled such that 99% of the scores
would lie in the range [0,100]:

z′ij =
100(zij+3)

6 .

Assuming that Z-scores are normally distributed, 99% of the
scores should lie in the range [-3,3], which we found to be the
case. Finally, we computed the Mean Opinion Score (MOS)
of each video as the mean of the rescaled Z-scores for both
the biased and the unbiased groups (Fig. 3).

Table 2. Performance of a few No-Reference IQA and VQA mod-
els on the proposed database. Italicized algorithms are IQA models.

NR-Model Median PLCC Median SROCC
BRISQUE [20] 0.4640 0.4579

NIQE [21] 0.4357 0.4333
V-BLIINDS [12] 0.4894 0.4933

VIIDEO [13] 0.1097 0.0677

3.2. Performance of Objective Quality Metrics

We evaluated the performance of some publicly available no-
reference generic IQA and VQA algorithms on the LIVE Mo-
bile In-Capture Video Quality Database. The entire dataset
was divided into non-overlapping training and test data (80/20
split). To mitigate any bias due to the division of data, the pro-
cess of randomly splitting the dataset was repeated 100 times.

Since V-BLIINDS [12] is a learning-based model, in each it-
eration, we trained a model from scratch on 80% of the data
and evaluated it on 20% of the data. For the other algorithms,
no training was required, hence we report their performance
on the test data alone. We used the publicly-available trained
BRISQUE [20] and NIQE [21] models to predict the qual-
ity of each video frame and averaged the scores to achieve
a final quality score for the video. Since these are generic
NR IQA/VQA algorithms, we used the MOS scores obtained
from the unbiased study group as ground truth scores. We
note that the biased study ratings will prove valuable for eval-
uating distortion-specific quality assessment algorithms. Ta-
ble 2 presents the median Pearson Linear Correlation Coeffi-
cient (PLCC) and Spearman’s Rank Ordered Correlation Co-
efficient scores (SROCC) computed between predicted and
ground truth quality scores across the 100 iterations. As may
be observed, we found that existing blind IQA/VQA algo-
rithms have significant room for improvement regarding their
ability to accurately predict the quality of videos suffering
from naturally-occurring, in-capture distortions.

3.3. Biased vs. Unbiased MOS

In order to understand if biasing a viewer to notice particular
distortions could impact their perceived quality, we computed
the correlation between the MOS obtained from the two sub-
ject groups for each distortion category. We found that the
unbiased subjects generally agreed with the biased group in
regards to distortion perception. An overall Spearman corre-
lation of 0.76 was obtained between the ratings of the two
groups (over all six distortions). A lowest Spearman cor-
relation value of 0.69 was achieved on videos belonging to
the color distortion category. This low correlation score is
also supported by responses to one of the end-of-the-study
questionnaire, where about 65% of the subjects in the unbi-
ased group reported that videos with color-specific distortions
were the hardest to detect.

4. FUTURE WORK

We designed a new database of videos captured using modern
mobile camera devices exhibiting contemporary in-capture
distortions. This new database of videos and associated sub-
jective scores provide a valuable tool that may be used to
address some of the limitations of current VQA databases
[2–4] in regards to content diversity and distortion realism
and variability. Building on our insights from this subjec-
tive study, we plan to explore the feasibility of developing
powerful distortion-specific (from our biased study) and also
unified generic (from our unbiased study) blind VQA models
that perform well on videos afflicted by complex in-capture
distortions. We are also interested in adapting such models to
perceptually optimize mobile cameras and lenses.
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