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ABSTRACT

Varying types of shots is a fundamental element in the language
of film, commonly used by a visual storytelling director to convey
the emotion, ideas, and art. To classify such types of shots from
images, we present a new framework that facilitates the intrigu-
ing task by addressing two key issues. We first focus on learning
more effective features by fusing the layer-wise outputs extracted
from a deep convolutional neural network (CNN), pre-trained on
a large-scale dataset for object recognition. We then introduce
a probabilistic fusion model, termed as error weighted deep cross-
correlation model (EW-Deep-CCM), to boost the classification accu-
racy. Specifically, the deep neural network-based cross-correlation
model (Deep-CCM) is constructed to not only model the extracted
feature hierarchies of CNN independently but also relate the statis-
tical dependencies of paired features from different layers. Then,
a Bayesian error weighting scheme for classifier combination is
adopted to explore the contributions from individual Deep-CCM
classifiers to enhance the accuracy of shot classification. We provide
extensive experimental results on a dataset of live concert videos
to demonstrate the advantage of the proposed EW-Deep-CCM over
existing popular fusion approaches. The video demos can be found
at https://sites.google.com/site/ewdeepccm2/demo.

Index Terms— Types of shots, convolutional neural networks,
live concert, language of film

1. INTRODUCTION

With the prevalence of mobile devices, people can now easily film
a live concert, and create video clips of specific performance. Pop-
ular websites such as YouTube or Vimeo have further boosted the
phenomenon as data sharing becomes easy. Videos of this kind,
recorded by audiences at different locations of the scene, provide
those who could not attend the event the opportunity to enjoy the
same performance. However, the viewing experience is usually un-
pleasant in that these videos are captured with no coordination, and
incompleteness or redundancy happens always. To ensure pleas-
ant viewing/listening experience, effective combination of the videos
plus a smooth “decoration” process that would generate a single yet
professional audio/visual stream is indispensable.

Video mashup, an emergent research topic in multimedia, can
well satisfy the above-mentioned needs. A successful mashup pro-
cess has to deal with all videos captured at different locations and
convert them into a complete, non-overlapping, seamless, and high-
quality outcome. Though a few attempts have been proposed to deal
with video mashup in recent years [1, 2, 3], they actually pay little
attention to the requirements of professional video editing. That is,

Table 1. The definition of six types of shots [4, 5].
Types of Shots Description

Close-Up A Close-Up is used to show emotion on the subject’s
face.(CU)

Medium Close-Up A Medium Close-Up contains a person’s head and
shoulders completely.(MCU)

Medium Shot A Medium Shot contains a person from the waist to
the top of the head.(MS)

Medium Long Shot A Medium Long Shot would contain a person from
his/her knees to the top of the head.(MLS)

Long Shot A Long Shot would contain a person’s entire body
from the top of the head to the bottom of the feet.(LS)

Extreme Long Shot An Extreme Long Shot covers a large area or land-
scape. It would be hard to see any reactions/emotion
from people in the shot since they are too far away.

(XLS)

these methods do not explicitly account for the visual storytelling
of shots defined by the language of film. We note that in the lan-
guage of film [4, 5], a type of shot is defined as how much a target
subject and its surrounding area can be seen. Totally, six types of
shots are defined, as described in Table 1. In film-making, an ex-
perienced director is good at switching different shot types to con-
vey the emotion, ideas, and art through a visual storytelling process
[4, 5]. Analogously, understanding how to properly employ shots
is crucial in carrying out a concert video mashup process. Figure 1
illustrates how visual storytelling is achieved in making an official
concert video. In particular, it shows that the director sequentially
uses the extreme long shot, medium close-up, close-up, and medium
close-up in the beginning of the song to express the emotion. Moti-
vated by the crucial relevance, we aim to classify the types of shots
(defined by the language of film) for better portraying visual story-
telling in a concert video, and plan to incorporate the technique in
our upcoming effort for building an automatic mashup platform.

To classify the types of shots from a concert video is a non-
trivial task. A feasible approach needs to distinguish the differences
between two different types of shots, which are mainly caused by
varying the viewing distances (cf. Table 1). The difficulty can be
further complicated by that the video quality of audience record-
ings in a live concert is often less satisfactory, due to the shakiness,
blurriness, and poor illumination factors. To the best of our knowl-
edge, research on language-of-film-based shot classification for con-
cert videos has not been actively explored. In the past, the most rele-
vant studies for shot classification were focused on sport videos and
movies [6, 7, 8]. For example, Bagheri-Khaligh et al. [6] and Benini
et al. [8] both propose to classify shot types into Close-Up, Medium
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Fig. 1. An example of visual storytelling of an official concert video
for the song “Someone Like You” by Adele live at Royal Albert Hall
2011.

Fig. 2. Two images from an official concert video of the song “93
million miles” by Jason Mraz live at Hong Kong 2012. The left
image is yielded by a MCU shot, and the right by a MLS.

shot, and Long shot in sport videos and movies, respectively. How-
ever, in their studies the three types of shots are not defined by the
definitions in language of film. Also, for the purpose of visual sto-
rytelling, addressing only these three types of shots is generally not
sufficient. In the technical aspect, their methods consider color dis-
tribution, motion activity maps, Hough lines and faces. Such fea-
tures are all hand-crafted and may not be suitable for dealing with
concert videos.

Inspired by the recent success in learning convolutional neural
networks (CNNs) for object classification and feature representation,
e.g., [9, 10, 11, 12, 13], we first model a shot type as the composi-
tion of objects, as shown in Figure 2, and then construct a feature
representation from the rich feature hierarchies of CNN to encode
the shot types. To perform shot (type) classification, we introduce
a novel probabilistic fusion model, termed as error weighted deep
cross-correlation model (EW-Deep-CCM), by exploring the correla-
tions between paired features, as well as their contributions to clas-
sification accuracy. (See Figure 3.) Finally, we note that besides the
aforementioned six types of shots (cf. Table 1), we consider two ad-
ditional variants, each of which focuses on either the audience shot
(ADS) or musical instrument shot (MIS), to enrich the visual sto-
rytelling in a concert video. In summary, our main contributions
include:

• This is the first work developed to classify the eight types of
shots (six of them are defined by the language of film) as the
basis for understanding visual storytelling in concert videos.

• We propose a novel probabilistic fusion model, EW-Deep-
CCM, to significantly improve the classification accuracy for
predicting the types of shots.

In the follows, we shall describe how the proposed EW-Deep-CCM
framework learns a fusion deep-net model to classify the types of
shots for images in detail.

2. IMAGE REPRESENTATIONS

Our idea builds upon the observation that deciding the shot of a given
image from a live concert video can be casted as interpreting a com-
position of various objects in the scene. Take, for example, the two
underlying shots discussed in Figure 2. In the left image, it com-
prises a hat, a T-shirt, and a microphone, while the corresponding
shot is medium close-up. In contrast, the right image is taken by a
medium long shot, and it includes a drum, a spotlight, a guitar, a hat,
a T-shirt, and a microphone. The information indicates that a long
shot tends to encompass more objects on the stage. Furthermore,
even though the two types of shots could include a same object, say,
hat, the size/location of the hat yielded by the two shot types are
still quite different. Based on these observations, we thus model a
shot (type) with a composition of objects, and use a CNN to better
represent the constituent objects.

We use the 16-layer VGG-Net [12] to obtain the hierarchical
features. The VGG-Net is trained on the ImageNet large-scale vi-
sual recognition challenge 2012 (ILSVRC-2012) dataset [11]. This
collection includes 1.3 million images over 1,000 object categories.
Along with the forward propagation in VGG-Net, we extract features
from the output layer and the two fully-connected layers as the object
representations for each input image, where the feature dimensions
are 1000-D, 4096-D and 4096-D, respectively.

3. EW-DEEP-CCM CLASSIFICATION

The proposed EW-Deep-CCM is a deep-net extension to a previ-
ous audio-visual emotion recognition model called error weighted
semi-coupled (EWSC) HMM [14]. Learning the EWSC-HMM con-
siders not only the temporal relationship between audio and visual
streams but also the contributions of different audio-visual feature
pairs for obtaining a better emotion recognition result. To model and
classify the shot type of an image, EW-Deep-CCM is constructed to
explore the relationship between paired shot representations, i.e., de-
rived from the hidden layers of a deep neural network (DNN) given
the object representation input, as well as their contributions for clas-
sifying different shot types as shown in Figure 3.

Given a deep CNN, we use Oout
i and Ofc

j to represent features
extracted from the ith output layer and the jth fully-connected layer,
and Λij = (Λout

i ,Λfc
j ) for the resulting feedforward DNN-based

cross-correlation model (Deep-CCM) classifier. Depending on the
CNN architecture, we could have two sets of object representations,
Oout = {Oout

i }Ci=1 and Ofc = {Ofc
j }Dj=1, and C ×D Deep-CCM

classifiers. For simplicity, we write O = (Oout,Ofc) and Oij =
(Oout

i , Ofc
j ). With the VGG-Net [12], we have C = 1 and D = 2.

Based on the feature representation O and the Deep-CCM clas-
sifiers {Λij}, the task to decide the shot type w of an image out of
totally K classes can be casted as estimating the following posterior
probability:

P (w|O) =
∑C

i=1

∑D

j=1
P (w,Λij |Oij)

=
∑C

i=1

∑D

j=1
P (w|Oij ,Λij)P (Λij |Oij)

(1)

where P (w|Oij ,Λij) is the probability of w given by the clas-
sifier Λij , together with the paired input from Oij . In addition,
P (Λij |Oij) can be considered an empirical weight assigned to the
Deep-CCM classifier, representing the confidence of the decision
of Λij . Following [14], we estimate the weight from the confusion
matrix of Λij .
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Fig. 3. Illustration of the proposed EW-Deep-CCM framework for shot classification.

Observe that the classification of w can be made by combining
the individual predictions from each Λij . Let w̃ be the prediction of
a shot type by an individual Λij . P (w|Oij ,Λij) in (1) can then be
further decomposed by

P (w|Oij ,Λij) =
∑K

k=1
P (w, w̃ = k|Oij ,Λij)

=
∑K

k=1
P (w|Oij ,Λij , w̃k)P (w̃k|Oij ,Λij)

≈
∑K

k=1
P (w|Λij , w̃k)P (w̃k|Oij ,Λij)

∝
∑K

k=1
P (w|Λij , w̃k)P (w̃k|Λij)P (Oij |Λij , w̃k)

(2)

where K = 8 and the approximation assumes the independence
of the shot prediction w and Oij , given that we already know the
individual shot prediction w̃k by Λij . Thus, to yield P (w|O) in (1),
we are left to estimate P (Oij |Λij , w̃k) in that both P (w|Λij , w̃k)
and P (w̃k|Λij) can be computed from the the confusion matrix of
Λij , as in [14].

Approximating P (Oij |Λij , w̃k) can be achieved by exploring
the co-occurrence dependencies between paired features, which not
only individually model the extracted features of object representa-
tions from the output and fully-connected layers, but also construct
the statistical dependencies among shot representations. We have

P (Oij |Λij , w̃k) ≈ P (Oij |Λout
i , w̃k)P (Oij |Λfc

j , w̃k)

= P (Oout
i |Λout

i , w̃k)P (Ofc
j |Oout

i ,Λout
i , w̃k)

× P (Oout
i |Ofc

j ,Λ
fc
j , w̃k)P (Ofc

j |Λfc
j , w̃k)

(3)

where P (Oout
i |Λout

i , w̃k) is the likelihood of the feature of the ith
output layer, and P (Ofc

j |Oout
i ,Λout

i , w̃k) is the probability of the co-
occurrence dependency between features of the ith output layer and
the jth fully-connected layer. The remaining in the right hand side
of (3) can be explained analogously.

It is possible to better model statistical dependencies in (3) for
classifying shot types. In particular, in the stage of testing, we
perform forward propagation through Λout

i and Λfc
j to map the ob-

ject representations, Oout
i and Ofc

j , into the shot representations,
Õout

i and Õfc
j , by respectively concatenating the features of the hid-

den layers. (See Figure 3.) It implies P (Ofc
j |Oout

i ,Λout
i , w̃k) and

P (Oout
i |Ofc

j ,Λ
fc
j , w̃k) in (3) are approximated by P (Õfc

j |Õout
i , w̃k)

and P (Õout
i |Õfc

j , w̃k), respectively. In addition, because Õout
i

and Õfc
j are continuous values, it is unfeasible to collect sufficient

amount of training data to construct statistical dependencies between
the two, under the joint condition w̃k. We use k-means clustering to
construct a codebook and perform vector quantization to represent
Õout

i and Õfc
j by their corresponding codeword, say, α̃out

i and β̃fc
j .

Hence, (3) can be rewritten as

P (Oij |Λij , w̃k) ≈ P (Oout
i |Λout

i , w̃k)P (β̃fc
j |α̃out

i , w̃k)

× P (α̃out
i |β̃fc

j , w̃k)P (Ofc
j |Λfc

j , w̃k).
(4)

We remark that the output by a DNN is a posterior probabil-
ity, but P (Oout

i |Λout
i , w̃k) and P (Ofc

j |Λfc
j , w̃k) in (4) are like-

lihoods. In our implementation, we approximate the first like-
lihood by P (w̃k,Λ

out
i |Oout

i )/P (Λout
i , w̃k) and the second by

P (w̃k,Λ
fc
j |Ofc

j )/P (Λfc
j , w̃k) .

With (2)-(4), we arrive at how P (w|O) in (1) is evaluated.
Specifically, in the test phase, P (w|O), the posterior probability of
each shot type w, can be inferred from every predicted shot type w̃k

by combining the outputs of Deep-CCM classifiers and empirical
weights in the paired object representations Oij = (Oout

i , Ofc
j ).

Then, the shot type w with maximum posterior probability is se-
lected as the classification result.

In the training phase, the feedforward DNNs Λout
i and Λfc

j

are trained separately using the back-propagation algorithm with
the objective of softmax cross entropy. P (β̃fc

j |α̃out
i , w̃k) and

P (α̃out
i |β̃fc

j , w̃k), the terms of cross-correlation are calculated by
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Close-Up (CU)

Medium Close-Up (MCU)

Medium Shot (MS)

Medium Long Shot (MLS)

Long Shot (LS)

Extreme Long Shot (XLS)

Audience Shot (ADS)

Musical Instrument Shot (MIS)

Fig. 4. The eight types of shots and examples.

Table 2. The distribution of collected data.
Data Type Data Source # Concert #Video # Frame
Training Official 14 17 22,292
Test Official 3 5 11,247
Test Audience 1 9 4,352

statistical co-occurrence dependencies over all the training data. The
empirical weights P (Λij |Oij) in (1), P (w|Λij , w̃k) and P (w̃k|Λij)
in (2) are calculated through a confusion matrix [14] over all the
training data based on the Deep-CCM classifiers.

4. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of EW-Deep-CCM, we conduct ex-
periments on a set of concert videos downloaded from YouTube. 31
video clips (including official and audience recordings) are collected
from 18 live concerts, with a total of 37,891 annotated images as in
Table 2. Each image is specified with an appropriate shot type based
on the definition of the language of film [4, 5]. Our experiments
aim to classify totally eight shot types as listed in Figure 4. Among
the collected images, 22,292 (official recording) image frames from
14 live concerts are included for training. We use 11,247 (official
recording) and 4,352 (audience recording) image frames from the
remaining 4 live concerts for testing (see Table 2).

We compare the performance of the proposed EW-Deep-CCM
with those of two popular approaches to data fusion, namely,
early fusion and late fusion [15]. For early fusion, features ex-
tracted from the output layer and the two fully-connected layers of
VGG-Net are concatenated to construct a combined feature vector
(1000+4096+4096), and then fed into a DNN classifier for shot
(type) classification. For late fusion, features extracted from the
three layers are first modeled by the corresponding DNN classifier.
The preliminary shot classification outputs from each DNN classi-
fier are then concatenated (8+8+8 shot type outputs) and fed into
the final DNN classifier for decision. The structure and parameter
setting of DNN with respect to the hidden layers, neurons, learning
rate, mini-batch size, the number of epochs for EW-Deep-CCM,
early fusion, and late fusion are determined when their best clas-
sification accuracy is achieved in the experiments. Finally, taking
account of that the number of testing data of the eight shot types
are imbalanced, we report both the weighted average (WA) and
unweighted average (UA, better reflecting the imbalances among
classes) classification rates in the experiments.

We first evaluate the performance of each layer-wise feature rep-
resentation for shot classification. In Table 3, both UA and WA ac-
curacy rates indicate that object representations of different layers

Table 3. UA/WA classification accuracy (%).
Data DNN-o1 DNN-fc2 DNN-fc1 Early Late Ours
Official (UA) 63.53 70.36 74.31 76.14 78.54 83.32
Official (WA) 58.67 72.80 78.77 74.62 79.10 81.25
Audience (UA) 50.65 62.84 53.47 59.00 64.64 77.50
Audience (WA) 50.62 62.78 66.06 64.09 67.37 73.21

Table 4. Layer-wise classification accuracy (%, official recordings).
Shot Types CU MCU MS MLS LS XLS ADS MIS
DNN-o1 56.33 64.48 54.33 33.94 79.90 62.21 92.31 64.52
DNN-fc2 82.68 91.99 48.81 13.97 60.78 75.50 92.31 96.87
DNN-fc1 68.57 91.71 92.30 31.21 39.71 86.32 100.0 84.71

(denoted as o1, fc1 and fc2) in VGG-Net have distinct contributions
to shot classification. Table 4 further shows the classification out-
comes of eight shot types for three layer-wise feature representations
in official recordings. Specifically, DNN-fc1 achieves better classi-
fication results for MS and XLS shot types, and DNN-fc2 for CU
and MIS shot types, while DNN-o1 yields better accuracy for MLS
and LS shot types. The finding inspires our use of a fusion approach
to integrating the representation power from different layers. Re-
garding the fusion comparison, it is evident from Table 3 that late
fusion outperforms early fusion in our experiments. This could be
due to that the use of a high-dimensional feature vector in early fu-
sion is prone to trap itself into the problems of data sparseness and
overfitting. Still, the UA classification rate of early fusion is mostly
better than that of each individual layer-wise representation, and that
indeed suggests the advantage of model fusion. On the other hand,
although late fusion does not concatenate the features and can thus
avoid the data sparseness and overfitting problems, the assumption
of conditional independence among the three layer-wise representa-
tions is practical, but not appropriate. Based on the above analyses,
EW-Deep-CCM is designed to not only individually model the ex-
tracted feature hierarchies of the VGG-Net but also construct the
statistical dependencies among paired features as well as exploring
their contributions to improve the classification accuracy. Among the
six approaches in Table 3, the proposed EW-Deep-CCM achieves the
best UA and WA classification rates. The Chi-squared test statistic
[16] performed on two-sided tests with a significance level of 0.05
further justifies that the differences of performances among the six
approaches are statistically significant with χ2(5) = 1984.169, P <
0.0001 and χ2(5) = 530.749, P < 0.0001 for official and audience
recordings, respectively. Finally, despite the less-satisfactory quality
of audience recordings, EW-Deep-CCM can still yield an UA accu-
racy rate close to 80%, not far behind that for official recordings.

5. CONCLUSIONS

We have introduced a novel probabilistic fusion framework, named
as error weighted deep cross-correlation model (EW-Deep-CCM),
to perform shot classification for concert videos. Our experiments
on both official and audience recordings have demonstrated that
EW-Deep-CCM outperforms the current popular fusion strategies,
and can offer satisfactory shot-type classification results. Lever-
aging with these promising outcomes, our future work along this
line would focus on addressing the challenging issues of learning
visual storytelling of professionally edited videos, which is crucial
in developing automatic techniques for video mashup.
Acknowledgment: This work was supported in part by MOST
grants 105-2221-E-001-018-MY3 and 105-2221-E-001-027-MY2.
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