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ABSTRACT

Group detection aims to classify pedestrians into categories
according to their motion dynamics. It’s fundamental for an-
alyzing crowd behaviors and involves a wide range of appli-
cations. In this paper, we propose a Anchor-based Manifold
Ranking (AMR) method to detect groups in crowd scenes.
Our main contributions are threefold: (1) the topological re-
lationship of individuals are effectively investigated with a
manifold ranking method; (2) global consistency in crowds
are accurately recognized by a coherent merging strategy; (3)
the number of groups is decided automatically based on the
similarity graph of individuals. Experimental results show
that the proposed framework is competitive against the state-
of-the-art methods.

Index Terms— Crowd Motion, Group Detection, Mani-
fold Structure, Clustering

1. INTRODUCTION

In recent years, the analysis of crowd behavior has been a ac-
tive research area in the realm of computer vision. As the
primary component that make up a crowd, coherent groups
have received plenty of attentions and involve many practical
applications, such as crowd tracking [1–4], anomaly detection
[5–7] and semantic scene segmentation [8]. However, the de-
tection of groups remains to be a challenging issue due to the
complexity of crowd behaviors.

A major difficulty in group detection comes from the com-
plicate structures of crowd motions. As shown in Figure 1
(a), people in crowd scenes tend to form manifold structures,
where individuals only keep consistency with their surround-
ings. In these cases, pedestrians in one group tend to show
big behavioral differences, which represents a serious imped-
iment in the detection of groups. Another barrier is the recog-
nition of global consistency. As Figure 1 (b) visualizes, in-
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Fig. 1. (a) Crowd motion with manifold structure. (b) Illus-
tration of local and global consistency in crowds.

dividuals in crowd scene may exhibit global behavior consis-
tency, which is neglected by traditional local clustering meth-
ods. Thus, it’s necessary to take the global coherency into
account when detecting groups.

Many efforts have been made on group detection. Ali and
Shah [9] and Lin et al. [8] segmented coherent motions by
transferring the flow field, which is time-consuming and lim-
ited to handle various crowd motions. Due to the serious oc-
clusion in crowd scenes, many approaches [10–17] treat fea-
ture point as study object. Zhou et al. [10] and Shao et al.
[11] detected groups by identifying the invariant neighbors of
each feature point. Zhou et al. [12] introduced a collective-
ness descriptor to quantifying coherent motions. Wu et al.
[13] detected coherent motions by collective merging. The
above techniques are either limited to exploit the topological
relationship of individuals or unable to discover global con-
sistency.

In this paper, we propose an Anchor-based Manifold
Ranking method (AMR) to detect coherent groups. Firstly,
the anchor individuals are identified to reveal the distinct
motion patterns in crowd scenes. Then, a manifold ranking
method is employed to cluster individuals into local coherent
motions based on their topological relationship with the an-
chors. Finally, a coherent merging strategy is developed to
combine the local motions and recognize global consistency.
We compare the proposed method with four state-of-the-art
methods and provide quantitative experimental results.
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2. DECISION OF ANCHORS

In crowd scenes, we assume that there exist an anchor indi-
vidual in each group, which connects to others and has the
ability to represent the shared motion pattern.

First, the individuals need to be extracted. Since the de-
tection and tracking in crowd scene are still not solved, we
use feature points to represent pedestrians, which can be ef-
fectively obtained by a generalized KLT (gKLT) tracker [12].
Then, we begin to detect groups on each frame separately. A
similarity graph is built to perceive the correlations of points
on the current frame. Denoting the spatial position and mo-
tion orientation of a point i as −→pi = (pxi , p

y
i ) and

−−→
orii =

(orixi , ori
y
i ) respectively, the similarity of point i and j can

be defined as

Gij =

{
max(

−−→
orii·

−−→
orij

|−−→orii|×|
−−→
orij |

, 0), if d(i, j) < r

0, else
, (1)

where d(i, j) =
√
(pxi − pxj )

2
+ (pyi − p

y
j )

2 is the spatial dis-
tance between i and j. Supposing there are N points, the dis-
tance threshold r is empirically set as the N -th smallest ele-
ment in all pairs of the distance d. Thus, the similarity will be
high if two points reside close to each other and share similar
motion orientation.

Given the graph G, the desired group number c can be
roughly estimated by calculating the number of strongly con-
nected components in G, which can be solved by the depth-
first search method [18]. Then we aim to find c anchor in-
dividuals. As mentioned before, an anchor should interact
closely with other individuals. So we define the interaction
intensity of point i as

ρi =
∑
j

Gij . (2)

Then a larger ρ indicates a closer connection with surround-
ings. As Rodriguez and Laio [19] pointed out, an anchor
point, which can be considered as the cluster center of a
group, should have higher interaction intensity than its neigh-
bors, and keep far away from those of higher intensity (cluster
center of other groups). Thus, similar to [19], a quantity δi is
introduced to measure the minimum distance between i and
points with higher intensities,

δi = min
j:ρj>ρi

d(i, j). (3)

If point i has the highest intensity, we simply set its δi as
maxjd(i, j). Then δ will be large for points with local or
global maxima interaction intensity. So the anchor individu-
als can be obtained by finding the points with the top c largest
δ, as shown in Figure 2 (b).

(a) (b)

Fig. 2. (a) Original video frame. (b) Tracked feature points
(yellow color) and detected anchors (red color). Arrows indi-
cate motion orientations.

3. CLUSTERING BY MANIFOLD RANKING

Regarding the anchors as labelled data, the group detection
procedure can be viewed as a multi-class semi-supervised
classification task. According to the relationship with an-
chors, points can be classified into different clusters.

For the purpose of precisely detecting groups, it’s neces-
sary to exploring the structures of crowds. To this end, a man-
ifold ranking method [20, 21] is utilized. Given c anchors, the
objective is to classify the points into c categories. First, let
Y ∈ RN×c denotes the initial label of points, where Yij = 1
if point i is the j-th anchor and Yij = 0 otherwise. And de-
fine F ∈ RN×c as a relationship matrix, where Fij indicates
point i’s topological relevance to anchor j. Thus, given the
similarity graph G, F can be obtained by solving the follow-
ing problem

argmin
F

1

2
(

N∑
i,j=1

Gij ||
Fi√
Dii

− Fj√
Djj

||2+α
N∑
i=1

||Fi − Yi||2),

(4)
where D is the degree matrix of G, Fi and Yi are the i-th row
of F and Y respectively. In the above problem, the smooth-
ness constraint (first term) ensures that the clustering result
don’t change too much between neighbors, and the fitting
constraint (second term) prevents all the elements of F to be
equal. The parameter α (α is set to be 0.1) balances the two
terms. Setting the derivative of the above equation to be 0, the
optimal solution can be computed as

F ∗ = (D − 1

1 + α
G)−1Y, (5)

where D is the degree matrix of G. For a point i, a larger
Fij indicates a higher probability that i belongs to the j-th
cluster. Furthermore, for outliers that don’t belonging to any
group, they keep low relevance to the anchors. Then point i
is denoted as an outlier if maxFi ≤ ε (ε is set as 0.2), and its
cluster index is 0. If point i is not an outlier, its cluster label
clusteri is defined as

clusteri = argmax
j≤c

F ∗ij . (6)
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Fig. 3. (a) Detected local clusters. (b) Final groups. Scatters
with different colors indicate different clusters/groups, and ar-
rows indicate motion orientations. The plus sign indicates
outliers. It can be seen that the coherent merging method suc-
cessfully combines the local clusters into groups.

After assigning a label to each point, the local clusters are
obtained. However, due to the global consistency in crowd
motions, the local clusters can’t represent the actual groups,
as shown in Figure 3 (a). So a coherent merging refinement is
followed to combine the local motions into final groups.

4. COHERENT MERGING

To detect global consistency, a coherent merging strategy is
designed to combine the obtained local clusters.

Since anchors have the ability to reveal the motion dy-
namic of groups, the coherency of groups can be measured ac-
cording to the anchors’ motion orientations. Supposing point
i and j are the anchors of cluster Ci and Cj respectively, the
coherency of Ci and Cj is defined as

Coh(Ci, Cj) =

−−→
orii ·

−−→
orij

|−−→orii| × |
−−→
orij |

. (7)

In addition, the spatial distance should also be taken into con-
sideration. If two clusters are close to each other, they are
like to belong to the same global group. To measure the spa-
tial distance of two clusters, an intuitive way is to calculate
their center positions’ distance. However, if the clusters con-
tain a great many of points, their centers may be far away even
when the clusters are adjacent. So we alternatively calculate
two clusters’ distance according to their nearest points

Dist(Ci, Cj) = min
i∈Ci,j∈Cj

√
(pxi − pxj )

2
+ (pyi − p

y
j )

2
. (8)

Afterwards, Ci and Cj are considered to be continuous if
Coh(Ci, Cj) > θ and Dist(Ci, Cj) < r, where threshold θ
is set to be 0.6 and r has been introduced in Section 2. Thus,
global consistency can be recognized by merging the contin-
uous clusters iteratively. In each iteration, only the clusters
with the highest motion coherency are combined, so the final
result will not affected by the merging order. As shown in

Figure 3 (b), after coherent merging, local clusters are suc-
cessfully combined into global coherent groups. The whole
procedure of the proposed method is shown in Algorithm 1.

Algorithm 1 The proposed framework
Input: Input frame with N tracked feature points, parame-

ters α, thresholds ε and θ.
Output: Detected groups.

Stage: Decision of anchors
1: Calculate points’ spatial distance d and the threshold r.
2: Build similarity graph G.
3: Predict desired group number c.
4: Compute ρ and δ for all points with Equation 2 and 3.
5: Identify anchors by finding the maximum δ.

Stage: Clustering by manifold ranking
6: Set the initial label matrix Y .
7: Calculate relevance matrix F with Equation 5.
8: Threshold F with ε to find outliers.
9: Obtain local clusters with Equation 6.

Stage: Coherent merging
10: repeat
11: Compute the coherency of clusters with Equation 7.
12: Calculate the distance between clusters with Equation

8.
13: Threshold coherency and distance with θ and r to find

continuous clusters.
14: Combine the continuous clusters with the highest co-

herency.
15: until no continuous clusters

5. EXPERIMENTS

In this section, extensive experiments are conducted to vali-
date the effectiveness of the proposed method. CUHK Crowd
Dataset [11] is employed to evaluate the performance, and
four state-of-the-art group detection techniques are used for
comparison.

Dataset: CUHK Crowd Dataset contains 474 crowd
videos with various densities and shapes. It provides the lo-
cations and velocities of tracked feature points, and annotates
the group label of each point.

Competitors: To quantitatively evaluate the perfor-
mance, four state-of-the-art methods are used as competitors,
including Coherent Filtering (CF) [10], Collective Transition
(CT) [11], Measuring Crowd Collectiveness (MCC) [12] and
Collective Density Clustering (CDC) [13]. We let all the
competitors use their respective optimal parameters

Performance: We detect groups on each video clip and
employ two widely used metrics, the accuracy (ACC) [22]
and F-score [23] as measurements. Higher values of ACC and
F-score indicate better results. The quantitative comparison of
different methods is shown in Table 1. It’s manifest that the
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CDCCF CT MCCAMRGround truth

Fig. 4. Representative comparison results of group detection. Scatters with different colors indicate different detected groups,
and the plus sign indicates outliers. The result of AMR is closer to the ground truth than the competitors.

CF CT
0.70 0.75
0.67 0.74

ACC
F-score

AMR
0.78
0.76

CDC MCC
0.67 0.69
0.68 0.67

Table 1. Quantitative comparison on group detection. Best
results are in bold faces

proposed AMR obtains the highest ACC and F-score, which
means that AMR is more effective than other methods. CF
detects groups by combine the invariant points into a group.
CT introduces a transition prior and refines the results of CF.
Both of the two methods need long term information and can’t
deal with the immediate motion change of individuals. MCC
measures the collectiveness of points and utilizes it to de-
tect groups, which neglects the global consistency in crowd
motions. CDC detects coherent motions with a two-stage
merging procedure. However, it’s limited to handle crowds
with manifold structures. The proposed AMR investigates the
topological relationship between points and reasonably com-
bines the local motions into global coherent groups. So it
doesn’t share the above deficiencies and achieves promising
performance. Some representative examples are visualized in
Figure 4, and it can be seen that the results of AMR are con-
sistent with the ground truth.

The proposed method decides group number automati-
cally, so we further verify whether the estimation is accu-
rate. The widely used Average Difference (AD) and Variance
(VAR) [13] are taken as measurements. The lower AD corre-
sponds to the less deviation from real group number, and the
lower VAR indicates a higher stability of group detection. Ta-
ble 2 denotes the performance of each method. The AD and
VAR of the proposed method are the lowest. CDC also ob-

CF CT
2.45 1.63
3.01 1.83

AD
VAR

AMR
1.47
1.56

CDC MCC
1.59 2.02
1.84 2.56

Table 2. Quantitative comparison on group number estima-
tion. Best results are in bold face

tains relatively good results, which is benefit from its global
clustering procedure. The performance of CF is unsatisfac-
tory because it can’t distinguish groups with subtle difference.
The proposed AMR utilizes a coherent merging processing,
so it performs well. Besides, the accuracy of group number
estimation also reflects the ability to detect global consistency.
Thus, we can conclude that AMR is capable of recognizing
the global consistency in crowds.

6. CONCLUSIONS

In this paper, a new group detection method has been put for-
ward. In this procedure, the interaction intensities of points
are first utilized to find the anchors, which reveal the motion
dynamics of groups. Points’ topological relevance to the an-
chors is deeply exploited with a manifold ranking method,
based on which the points are classified into local clusters. A
coherent merging strategy is developed to combine the contin-
uous local clusters and recognize global consistency. Exper-
imental results and comparison to the state-of-the-art meth-
ods validate the proposed method’s capability to detect groups
and estimate group number accurately. In the future, we will
investigate how to apply our method into some specific appli-
cations, such as event recognition and crowd counting.
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