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ABSTRACT

With the coming age of big data, the image signals play more
and more important role in our life due to the extraordinary
advance of network communication technology, and the cor-
responding high efficiency image processing techniques are
demanded urgently. The Fourier transform is an important
image processing tool which is used in a wide range of appli-
cations. Traditional Fourier transform algorithm computes on
the value of each point of image, regardless of their properties
in frequency domain. However, most image signals possess
sparsity in frequency domain. In this paper, we present a new
fast two-dimensional Fourier transform based on image spar-
sity. With hash function including a series of procedures such
as random spectrum permutation, filtering and subsampling in
frequency domain, the algorithm could identify and estimate
the k largest coefficients quickly. In most sparse cases, the
resulting algorithm performs faster than state-of-the-art fast
Fourier transform algorithm, FFTW.

Index Terms— Fourier transform, image sparsity, hash
function, FFTW

1. INTRODUCTION

Advances on communication and transmission techniques
over Internet have been witnessed under the background of
the big data. The amount of image signals is dramatical-
ly increasing, and various applications of image processing
are rapidly developed such as Magnetic Resonance Imaging
(MRI) [1], Light Field Photography [2] and Radio Astrono-
my [3]. The discrete Fourier transform (DFT) is one of the
most fundamental and important numerical algorithms which
plays a central role in image processing area, including image
feature extraction [4], image denoising [5], and compressed
sensing [6]. The Fast Fourier Transform (FFT) [7] which
computes the DFT of an n-size signal in O(n log n) time
greatly simplifies the complexity of DFT, and gets a broad
range of applications.

The general algorithms for computing the exact DFT must
take time at least proportional to its size n. However, it is well
known that most image signals possess sparsity in frequen-
cy domain [8–10]. That is, the image signals have natural-

ly sparse representations with respect to fixed Fourier basis.
This property is widely used in various applications including
High Efficiency Video Coding (HEVC) [11], computation-
al learning theory [12], and compressed sensing. Therefore,
for sparse image signals, the Ω(n) lower bound for the com-
plexity of DFT no longer applies. It is crucial to study the
new strategy of the Fourier transform based on image spar-
sity. In 2012, Hassanieh et al proposed sparse fast Fourier
transform [13] [14] for one dimension signal which is faster
than traditional DFT. However, two-dimensional image sig-
nal is more widely used, and two-dimensional sparse Fourier
transform cannot simply be constructed with one-dimensional
sparse Fourier transform. Therefore, in this paper, we propose
a new fast two-dimensional Fourier transform that takes ad-
vantage of image sparsity (2D-SFFT).

The remainder of this paper is organized as follows. Sec-
tion 2 presents the hash function which is an essential part in
2D-SFFT. Hash function includes permutation, filtering and
subsampling in frequency domain. Section 3 describes the
two-dimensional sparse Fourier transform algorithm. Section
4 reports the simulation results followed by the conclusion in
Section 5.

2. HASH FUNCTION

Several conventions and notations are used in this thesis. An
image in space domain is represented as a 2D matrix x ∈
Cn×n, the 2D Fourier spectrum of the image is represented
as x̂. We assume that n is a integer of power of 2, the notation
[n] is defined as the set {0, 1, ..., n− 1}, and [n]× [n] = [n]

2

to denote the n × n grid {(i, j) : i ∈ [n], j ∈ [n]}. The
image support is denoted by supp(x) ⊆ [n] × [n]. We use
∥x∥0 to denote |supp(x)|. All matrix indices are implicity
calculated modulo the matrix size, e.g. xi,j of image x is
actually xi mod n,j mod n. A set of matrix elements can be
written as a matrix subscripted with a set of indices, for ex-
ample xI,J = {xi,j |i ∈ I, j ∈ J}.

We define ω = e−2πi/n to be a primitive n-th root of
unity. In the following sections, we will use the following
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definition of the 2D-DFT without the constant scaling factor:

x̂i,j =
∑

u∈[n]

∑
v∈[n] xu,vω

iu+jv, (u, v) ∈ Ωn

Ωn = {(u, v)|0 ≤ i ≤ n− 1, 0 ≤ j ≤ n− 1} (1)

This makes some proofs easier, but is not relevant in practical
implementations.

The 2D-SFFT algorithm firstly uses a hash function to ex-
tract useful image information. Hash function includes ran-
dom spectrum permutation, filtering and subsampling in fre-
quency domain.

2.1. RANDOM SPECTRUM PERMUTATION

The first important step for the 2D-SFFT is spectrum permu-
tation as defined in Definition 1:

Definition 1 Let σ1 and σ2 be invertible modulo n, i.e.
gcd(σ1, n) = 1, gcd(σ2, n) = 1, and τ1 ∈ [n], τ2 ∈ [n].
Then, i → σ1i + τ1 mod n and j → σ2j + τ2 mod n are
permutations on [n]. The associated permutation Pσ1,σ2,τ1,τ2

on a matrix x is then given by

(Pσ1,σ2,τ1,τ2x)i,j = xσ1i+τ1,σ2j+τ2 (2)

When a permutation is applied to an image x in space do-
main, the image’s frequency domain x̂ is also permuted. This
interesting property is derived in Lemma 1.

Lemma 1 Let Pσ1,σ2,τ1,τ2 be a permutation and x be an two-
dimensional vector. Then

̂(Pσ1,σ2,τ1,τ2x)σ1i,σ2j
= x̂i,jω

−(τ1i+τ2j), (i, j) ∈ Ωn (3)

Proof. For (i, j) ∈ Ωn,

̂(Pσ1,σ2,τ1,τ2x)i,j =
∑
u∈[n]

∑
v∈[n]

xσ1u+τ1,σ2v+τ2ω
iu+jv (4)

with a1 = σ1u+ τ1, a2 = σ2v + τ2

̂(Pσ1,σ2,τ1,τ2x)i,j

=
∑

a1∈[n]

∑
a2∈[n]

xa1,a2ω
(a1−τ1)

σ1
i+

(a2−τ2)
σ2

j

= ω−(
τ1
σ1

i+
τ2
σ2

j) ∑
a1∈[n]

∑
a2∈[n]

xa1,a2ω
(
τ1
σ1

i+
τ2
σ2

j)

= ω−(τ1σ1
−1i+τ2σ2

−1j)x̂σ1
−1i,σ2

−1j (5)

This Lemma follows by substituting i = σ1i, j = σ2j. Note
that ω−(τ1i+τ2j) changes the phase, but does not change the
magnitude of x̂i,j .

We do not have access to the input image’s Fourier spec-
trum since that would involve performing a DFT. The per-
mutation in the 2D-SFFT algorithm allows to permute the
image’s Fourier spectrum by modifying the image’s space-
domain x.

Fig. 1. 2D Guassian window function

2.2. WINDOW FUNCTIONS

In order to achieve a sub-linear runtime, 2D-SFFT only us-
es a part of the input image for computations. The standard
window function acts like a filter, allowing us to focus on a
subset of the Fourier coefficients. Ideally, however, we would
like the pass regoin of our filter to be as flat as possible to
avoid spectral leakage. Therefore, two-dimension flat Guas-
sian window functions are used in 2D-SFFT.

The 2D flat Guassian window function can be obtained
from a 2D Guassian standard window function which is
shown in Fig. 1 by convolving it with a two-dimension “box
car” window function which can be presented as:

r(i, j) =

{
1, (i, j) ∈ D

0, (i, j) ∈ D
′ (6)

where D = {(i, j)| − b
2 ≤ i ≤ b

2 ,−
b
2 ≤ j ≤ b

2}. The 2D
Guassian window function is presented as:

f(i, j) = Aexp[−(
(i− i0)

2

2σ2
i

+
(j − j0)

2

2σ2
j

)] (7)

By the convolution of (6) and (7), we can get the 2D Guassian
flat window function G. Fig. 2 shows it in time domain and
frequency domain.

Using 2D Guassian flat window function G, a part of size
|supp(G)| can be extracted out of Pσ1,σ2,τ1,τ2x by multiply-
ing G and x and neglecting the coefficients with value zero.
According to the convolution theorem, the multiplication is
equivalent to a convolution of Ĝ and x̂. Filter process can
expand the area of non-zero coefficients, in preparation for
the subsequent sub-sampling and reverse steps, and further
increase the probability of detecting non-zero coefficients.

2.3. FAST SUBSAMPLING AND DFT

Lemma 2 Let B ∈ N divide n, x be an N × N two-
dimensional matrix and y be a B×B two-dimensional matrix
with yi,j =

∑
u∈[n]

∑
v∈[n] xi+Bu,j+Bv for i = 1, ..., B, j =

1, ..., B. Then, ŷi,j = x̂i(n/B),j(n/B)
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(1) 2D Gaussian Function G (2) 2D Gaussian Function Ĝ

Fig. 2. The 2D Guassian flat window function in time domain
and frequency domain

Proof .

x̂i(N
B ),j(N

B ) =
N−1∑
u=0

N−1∑
v=0

xu,vω
(iu+jv)(N

B )

N

=
B−1∑
a1=0

N
B −1∑
u=0

B−1∑
a2=0

N
B −1∑
v=0

xBu+a1,Bv+a2
ω
(i(Bu+a1)+j(Bv+a2))(

N
B )

N

=
B−1∑
a1=0

N
B −1∑
u=0

B−1∑
a2=0

N
B −1∑
v=0

xBu+a1,Bv+a2ω
(ia1+ja2)(

N
B )

N

=
B−1∑
a1=0

B−1∑
a2=0

yi,jω
(ia1+ja2)(

N
B )

N (8)

Note that ω
(ia1+ja2)N
N = (e−2πb/N )(ui+vj)N = 1 and

ω
n/B
n = (e−2πb/N )N/B = ωB . Thus, it follows ŷi,j =

x̂i(n/B),j(n/B).

Lemma 2 effectively reduces dimension by subsampling
image in time domain and summing up the result. As the im-
age is sparse in frequency domain, dimension reduction can
reduce the complexity of searching position and amplitude of
non-zero elements.

Random spectrum permutation, filtering and subsampling
describe a hash function hσ1,σ2 : [N ×N ] → [B ×B]

hσ1,σ2(i, j) = round(σ1σ2ij
B2

N2
), i ∈ [N ], j ∈ [N ] (9)

Hash function hσ1,σ2 maps each of the N ×N coordinates of
the input image to one of B ×B bins.

An example of image in frequency domain (k = 2) is
shown in Fig 3(1). The process of hash function are shown in
Fig. 3. Filter process can expand the area of non-zero coeffi-
cients to increase the detection probability. Subsampling can
effectively reduces complexity.

(1) Original image x̂(k = 2) (2) permuted image ̂(Pσ1,σ2,τ1,τ2x)

(3) filtered image ̂(G · Pσ1,σ2,τ1,τ2x)
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(4) Subsampled image in frequency domain

Fig. 3. The process of permutation, filtering and subsampling
on image (k = 2)

Cutoff
(keep dk coordinates of maximum magnitude)

Hash Function
(Permute, Filter, Subsampling+FFT )

Reverse Hash Function
 

Fig. 4. The process of seek location

3. TWO-DIMENSION SPARSE FOURIER
TRANSFORM ALGORITHM

The 2D-SFFT consists of multiple executions of two kinds of
operations: location seeking and coefficient estimation. Lo-
cation seeking is to generate a list of candidate coordinates
which have a certain probability of being indices of nonzero
coefficients in frequency domain. While coefficient estima-
tion is used to precisely determine the frequency coefficients.

3.1. LOCATION SEEKING

The process of location seeking is shown in Fig. 4. By run-
ning multiple iterations of the location seeking, we can find
candidate coordinates with high probability of being of the k
nonzero coordinates.

3.2. COEFFICIENT ESTIMATION

The implementation of coefficient estimation also uses hash
function. Given a set of coordinates I , x̂i,j can be estimated
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Fig. 5. A simplified flow diagram of 2D-SFFT

as
x̂

′

i,j = Ẑhσ1,σ2 (i,j)
ωτ1i+τ2j/Ĝoσ1,σ2 (i,j)

(10)

which basically removes the phase change due to the permu-
tation and the effect of the filter.

A simplified flow chart of 2D-SFFT is shown in Fig. 5.
After running multiple iterations of the location seeking we
only need to keep coordinates occurred in at least half of the
location loops. For the coordinates I

′
, the median of the cor-

responding outputs of L coefficient estimation is the frequen-
cy coefficient.

4. NUMERICAL EXPERIMENTS

In this section, we compare 2D-SFFT with 2D-FFTW in
FFTW algorithms library [15].

Experiment 1: The sparsity k is fixed to a constant (k =
50, 100), image size ranges from 28 × 28 to 213 × 213, and
the runtime of the compared algorithms are shown in Fig. 6.
As expected, the runtimes of them are approximately linear
in the log scale. However, the slope of the line for 2D-SFFT
is less than 2D-FFTW, indicating that 2D-SFFT has the faster
runtime than 2D-FFTW for a large range of image size.

Experiment 2: The image size N is fixed to a constan-
t (N = 211 × 211, 212 × 212) and the runtime vs. image
sparsity k(k = 50, 100, 200, 500, 1000) are shown in Fig. 7.
Fig. 7(1) shows 2D-SFFT is faster than 2D-FFTW when spar-
sity k < 2500, while 2D-SFFT presents disadvantage when
sparsity k > 2500. In addition, we find that when sparsity
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Fig. 6. The running time comparison on different image sizes
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Fig. 7. The running time comparison on different sparsity
degrees

k is increasing, the runtime of 2D-SFFT is also increasing,
while the runtime of 2D-FFTW is essentially constant, which
depends on image size not sparsity k.

5. CONCLUSION

FFT is an important image processing algorithm. Consider
most images possess sparsity in frequency domain, we pro-
pose a novel algorithm 2D-SFFT which takes advantage of
the sparsity characteristics of images based on existing re-
search. Experimental results show that 2D-SFFT presents a
substantial advantage than traditional 2D-FFTW.

As this paper is exploratory, there are many intriguing
questions that future work should consider. The 2D-SFFT
is a probabilistic algorithm which needs multiple loops to in-
crease the accuracy. Signal sparsity and selection of filter play
an important role to successful algorithm implementation and
application.
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