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ABSTRACT 

 

Multi-frame image super-resolution (SR) is an image 

processing technology applicable to any digital, pixilated 

camera that is limited, by construction, to a certain number of 

pixels. The objective of SR is to utilize signal processing to 

overcome the physical limitation and emulate the 

“capabilities” of a camera with a higher-density pixel array. 

SR is well known to be an ill-posed problem and, 

consequently, state-of-the-art solutions approach it 

statistically, typically making use of Bayesian inference. 

Unfortunately, direct marginalization of the posterior 

distribution resulting from the Bayesian modeling is not 

analytically tractable. An approximation method, such as 

Variational Bayesian Inference (VBI), is a powerful tool that 

retains the advantages of statistical modeling. However, its 

derivation is tedious and model specific. In this paper, we 

propose an alternative approximate inference methodology, 

based upon the well-established, Gaussian Information Filter, 

which offers a much simpler mathematical derivation while 

retaining the statistical advantages of VBI.      

 

Index Terms— Super-Resolution, Image-Processing, 

Inverse Problems, Remote Sensing, Photogrammetry 

 

1. INTRODUCTION 

 

Multi-frame image super-resolution (SR) is an image 

processing technology applicable to any digital, pixilated 

camera that is physically limited, by construction, to sample 

a scene with a discrete, 𝑚 𝑥 𝑛 pixel array. The 

straightforward objective of SR is to utilize signal processing 

to overcome this physical limitation of the 𝑚 𝑥 𝑛 array and 

emulate the “capabilities” of a camera with a higher-density, 

𝑀𝑚 𝑥 𝑀𝑛 (𝑀 > 1) pixel array. 𝑀 is the “magnification 

factor” of the SR algorithm. The exact meaning of 

“capabilities”, in the preceding sentence, is application 

dependent. As the name implies, multi-frame SR techniques 

take multiple low-resolution (LR) frames as input and 

combine them in some way to produce a high-resolution (HR) 

output. In doing so, SR algorithms capitalize on the fact that 

high spatial-frequency content in the scene is present in the 

LR images, but degraded due to aliasing resulting from 

limited sampling density. 

 SR is well known to be an ill-posed problem. 

Consequently, state-of-the-art solutions treat SR as a matter 

of inferring the HR image based not only on the LR input 

images but also on prior information about the HR image, 

frame-to-frame motion, etc. A hierarchical Bayesian 

framework provides a powerful and flexible means to 

incorporate all of this information into the SR problem [1,2]. 

 Unfortunately, direct integration of the posterior 

distribution, resulting from the Bayesian modeling, in order 

to get the expected value of the HR image, is not analytically 

tractable. This leads to three potential solutions, namely, i) 

Maximum a Posteriori (MAP), ii) Sampling methods, and iii) 

Approximate inference. 

Due to its simplicity, the MAP method is the most 

commonly seen in practice. A typical example is the 

algorithm of Farsiu, et. al [3]. However, MAP solutions can’t 

exploit the full potential offered by probabilistic modeling as 

only the posterior mode is sought [4]. As the forward model 

becomes more complex, either due to more complex image 

priors or simultaneous estimation of other parameters such as 

camera motion, finding the mode can become very sensitive 

to local minima.  

Sampling methods, such as Markov Chain Monte Carlo 

(MCMC) or Hamiltonian Monte-Carlo (HMC) [4], work in 

principle but are computationally expensive. They do, 

however, lend themselves to mass parallelization. So, it is 

possible that with the increase in computing power, 

particularly using devices such as GPUs that exploit mass 

parallelization, these methods may see more frequent use. 

However, we do not consider them in this paper.  

Approximate inference methods, such as Variational 

Bayesian Inference (VBI) which is well described in [4], 

allow us to retain the advantages of statistical modeling and 

obtain the full posterior in a computationally efficient 

manner. The VBI approach is used in several state-of-the-art 

solutions [1,2,6]. The VBI methods are powerful; however, 

their derivation is advanced, tedious, and model specific 

[7,8]. It is difficult to quickly experiment with different 

models as the VBI solution must be carefully re-derived each 

time. This difficulty limits the general appeal of the, 

statistically superior, VBI solution and frequently leads 

practitioners to abandon it in favor of conceptually simpler, 

yet less powerful methods, methods such as the single point 

MAP solution. 
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In this paper, we propose an alternative approximate 

inference methodology based upon the well-established, 

Gaussian Information Filter (IF). The IF is a dual-form of the 

popular Kalman filter and offers a much simpler 

mathematical derivation while retaining the statistical 

advantages of VBI. We believe this alternative will make 

Bayesian inference solutions more accessible to the general 

practitioner. 

The remainder of the paper is organized as follows. In 

section 2, we introduce the hierarchical Bayesian formulation 

of the SR problem. In section 3, we derive our solution using 

a combination of the IF and the expectation-maximization 

(EM) technique to create an “IFEM” algorithm. In section 4, 

we compare the IFEM to the state-of-the-art using image data 

captured from a drone. In section 5, we conclude the paper.  

        

2. HIERARCHIAL BAYESIAN MODEL 

 

In the following, we use the formulation presented in [1,2]. 

This model assumes that the imaging process has captured 𝐿 

LR images 𝑦𝑘  from an unknown HR image 𝑥. Note that, in 

this formulation, both the LR and HR images are already in 

the discrete, pixelated domain. The LR images 𝑦𝑘  and the HR 

image 𝑥 consist of a total of  𝑁 and 𝑀2𝑁 pixels, respectively, 

where the value 𝑀 >  1 is the magnification factor 

representing the increase in resolution. In order to represent 

the problem compactly in matrix-vector notation, the images 

𝑦𝑘  and 𝑥 are arranged in lexicographical order as 𝑁 𝑥 1 and 

𝑀𝑁 𝑥 1 vectors, respectively. The imaging process model 

includes warping, blurring (MTF), noise, and down-sampling 

as 

𝑦𝑘 = 𝐴𝐻𝑘𝐶(𝑠𝑘)𝑥 + 𝑛𝑘, 

where 𝐴 is the 𝑁 𝑥 𝑀2𝑁 downsampling matrix, 𝐻𝑘 is the 

𝑀2𝑁 𝑥 𝑀2𝑁 blurring matrix, 𝐶(𝑠𝑘) is the 𝑀2𝑁 𝑥 𝑀2𝑁 

warping matrix generated by the image motion vector 𝑠𝑘, and 

𝑛𝑘 is the 𝑁 𝑥 1 acquisition noise.  

 Given (1), the SR problem is to find the best estimate of 

the HR image 𝑥 from the set of LR images 𝑦𝑘  using prior 

knowledge about 𝐶(𝑠𝑘), 𝑛𝑘, and 𝑥. Note, at this point, we 

have not had to specify the specific functional form of the 

warping model 𝐶(𝑠𝑘) or the dimensionality of the set of 

warping parameters {𝑠𝑘}. We can now define the joint 

posterior of all unknowns as  

𝑃𝑟[𝑥, {𝑠𝑘}, {𝛽𝑘}, 𝛼|{𝑦𝑘}, {𝛺𝑠𝑘}] 

 ∝ ∏ (𝛽𝑘

𝑁

2 𝑒𝑥𝑝 (−
𝛽𝑘

2
‖𝑦𝑘 −𝐿

𝑘=1

𝐴𝐻𝑘𝐶(𝑠𝑘)𝑥‖2) 𝑒𝑥𝑝 (−
1

2
𝑠𝑘

𝑇𝛺𝑠𝑘𝑠𝑘) 𝑃𝑟[𝛽𝑘]) 𝑃𝑟[𝑥|𝛼]𝑃𝑟[𝛼], 

where 𝛺𝑠𝑘 is the measurement precision matrix of the 

warping parameters for LR frame 𝑘, 𝛽𝑘 is a hyper-parameter 

for the likelihood of measured image 𝑘, 𝛼 is a hyper-

parameter for high-resolution image prior model, 

𝑃𝑟[𝑥|𝛼] represents the HR image prior model, and the terms 

𝑃𝑟[𝛽𝑘] and 𝑃𝑟[𝛼] represent hyper-priors on the hyper-

parameters. A common image prior model, 𝑃𝑟[𝑥|𝛼], is the 

Total Variation (TV) prior, which is used for image 

reconstruction problems due to its inherent ability to retain 

sharp gradients at image edges [2], given by 

𝑃𝑟[𝑥|𝛼] = 

𝛼𝑀2𝑁/2𝑒𝑥𝑝 (−
𝛼

2
∑ √𝛥ℎ𝑖

2 + 𝛥𝑣𝑖
2𝑀2𝑁

𝑖=1 ),  

where 𝛥ℎ𝑖 and 𝛥𝑣𝑖 are the horizontal and vertical gradients, 

respectively, for pixel 𝑖 in the HR image 𝑥. 𝛥ℎ𝑖 and 𝛥𝑣𝑖 may 

be found using any reasonable gradient estimator. Another 

common image prior is the Gaussian, Simultaneous Auto-

Regressive (SAR). However, it is known to not preserve 

image edges as well as the TV prior.   

 The hyper-priors, 𝑃𝑟[𝛽𝑘] and 𝑃𝑟[𝛼], are commonly 

modeled using either the uninformative distribution, in which 

case they have to be complete estimated from the data itself, 

or as Gamma distributions [2]. The Gamma distribution is 

convenient from an analytic tractability perspective in that it 

is conjugate to the normal distribution [5]. A conjugate prior 

distribution is one that results in a posterior distribution 

having the same functional form as the prior. The ability of 

the algorithm to automatically learn the hyper-parameters 

from the data, either with an uninformative prior or some 

guidance via a Gamma prior, is a powerful capability. Other 

popular, non-Bayesian, SR methods leave the hyper-

parameter estimation to the user which requires a long 

parameter-tuning process and can limit the applicability of 

the solution, as described in [2].    

 

3. DERIVATION OF THE PROPOSED 

INFORMATION-FILTER / EXPECTATION-

MAXIMIZATION (IFEM) SOLUTION 

 

Prior work on VBI for SR has shown that, without prior 

assumption, the distribution models which minimize the 

Kullback-Leibler (KL) divergence for both the unknown 

high-resolution image 𝑥 as well as unknown image 

registration parameters {𝑠𝑘} are, indeed, Gaussian 

distributions [1,2]. Given this result, we propose to solve the 

SR problem using the well-established tools and theory 

surrounding Bayesian Gaussian filters [9]. The extended 

Kaman filter (EKF), which supports non-linear models via 

local linearization, is the most popular of these and has been 

previously examined for SR [10]. However, the EKF solution 

creates several issues. We offer two changes to address these 

issues. The most significant issue arises from the required 

size of the state covariance matrix. An HR image with 𝑀2𝑁 

pixels requires a very large covariance matrix with (𝑀4𝑁2) 

(1) 

(2) 

(3) 
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elements. However, even though the covariance matrix is 

large, it is very sparse. The actual required size can be judged 

by estimating the number of likely non-zero correlations for 

each image pixel. Each pixel will be correlated to its 

immediate neighbors due to image motion and blur. It will 

also be correlated to each element in the set of warping 

parameters {𝑠𝑘}. If there are an average of Q of these non-

trivial correlations per pixel, we expect the total number of 

non-zero elements of the covariance matrix to be 𝑄𝑀2𝑁 ≪
(𝑀4𝑁2). Consequently, by using modern, numerical linear 

algebra software, which is able to utilize sparse matrices, we 

are able to overcome this limitation. Support for sparse matrix 

operations is available in such packages as Matlab and 

NVIDIA’s Cuda library [11].   

 Secondly, the EKF, in its native form, has numerical 

difficulties with the SR problem. The EKF is characterized 

by a relatively straightforward time update step and a more 

difficult measurement update step. In contrast, its dual 

formulation, the information filter (IF) has a difficult time 

update step and a relatively straightforward measurement 

update step [9]. In the SR formulation, we are effectively only 

using the measurement update of the Bayesian filter. 

Therefore, the IF turns out to be a computationally simpler 

and more numerically stable solution. We also investigated 

the Unscented Kalman Filter (UKF) which is a Gaussian filter 

closely related to the EKF [9,12] and has some precedent in 

image enhancement applications such as film-grain removal 

[13]. In principle, the UKF is better able to handle non-linear 

models than the EKF. There is, however, no existing dual 

formulation of the UKF akin to the IF and we find that the 

UKF suffers from the same numerical difficulties with SR as 

the EKF. 

 

3.1. Derivation of the IF Solution 

We start with a general description of the IF. Given an 

unknown state vector 𝜃 and a series of 𝑃 measurement 

residuals {𝑧𝑝
′ }, it solves for the posterior probability 

distribution of the form  

𝑃𝑟[𝛥𝜃|{𝑧𝑝
′ }] =

∏ 𝑃𝑟[𝑧𝑝
′ |𝛥𝜃]𝑃

𝑝=1 𝑃𝑟[𝛥𝜃]

𝑃𝑟[{𝑧𝑝
′ }]

, 

where a “measurement residual” is the difference between the 

actual measurement and a prediction of the measurement 

based upon the current best-estimate of the state 𝜃 and ∆𝜃 is 

a correction to the current best-estimate of the state 𝜃. Using 

∆𝜃 as opposed to 𝜃 in (4) allows us to handle non-linear 

models through local linearization. We model the relationship 

between the measurement residual 𝑧𝑝
′ , the actual 

measurement 𝑧𝑝, and the state 𝜃 through 

𝑧𝑝
′ = 𝑧𝑝 − ℎ𝑝(𝜃) ≅ [

𝛿ℎ𝑝

𝛿𝜃
] 𝛥𝜃, and 

𝑃𝑟[𝑧𝑝
′ |𝛥𝜃]~𝑁 ([

𝛿ℎ𝑝

𝛿𝜃
] 𝛥𝜃 , 𝑄𝑝  ), 

where 𝑄𝑝  is the covariance of the measurement residual 𝑧𝑝
′  

and ℎ𝑝(𝜃) is a, in general non-linear, function that predicts 

the measurement, 𝑧𝑝, based on the current state estimate. We 

linearize the measurement function locally about 𝜃 by 

computing the Jacobian [
𝛿ℎ𝑝

𝛿𝜃
].   

 A general, analytic solution to (4) is available for the 

special case that all of the above probability functions are 

Gaussian. The solution is given in [9] as 

𝛺 = ∑ [
𝛿ℎ𝑝

𝛿𝜃
]

𝑇

𝑄𝑝
−1 [

𝛿ℎ𝑝

𝛿𝜃
]𝑃

𝑝=1 , 

𝜉 = ∑ [
𝛿ℎ𝑝

𝛿𝜃
]

𝑇

𝑄𝑝
−1[𝑧′𝑝 ]𝑃

𝑝=1 , and 

𝛥𝜃 = 𝛺−1𝜉, 

where Ω is the covariance of the state-estimate correction 𝛥𝜃.  

 The only remaining task is to convert the posterior in (2) 

into the form required by (4) by defining the appropriate 

forms for 𝑧𝑝, ℎ𝑝(𝜃), and 𝑄𝑝
−1 for each term. Then, we will be 

able to use (6a-6c) to solve for the unknown, HR image 𝑥. 

We first define the augmented state-vector 𝜃 to be the 

combination of the HR image 𝑥 and the set of warping 

parameters {𝑠𝑘}; i.e. 𝜃 = [
𝑥

 {𝑠𝑘}].    

 The data likelihood term in (2), 𝛽𝑘
𝑚𝑛/2

𝑒𝑥𝑝 (−
𝛽𝑘

2
‖𝑦𝑘 −

𝐴𝐻𝐶𝑘(𝑠𝑘)‖2), is realized by setting 𝑧𝑝 = 𝑦𝑘, ℎ𝑝(𝜃) =

𝐴𝐻𝐶𝑘(𝑠𝑘)𝑥, and 𝑄𝑝
−1 = 𝛽𝑘𝐼𝑁 𝑥 𝑁. 𝐼𝑁 𝑥 𝑁 is the (𝑁 𝑥 𝑁) 

identity matrix. Likewise, the prior on the warping parameter 

corrections,  𝑒𝑥𝑝 (−
1

2
𝑠𝑘

𝑇𝛺𝑠𝑘𝑠𝑘), is realized by setting 𝑧𝑝 =

0, ℎ𝑝(𝜃) = 𝑠𝑘, and 𝑄𝑝
−1 = 𝛺𝑠𝑘. 

In order to handle the image prior model 𝑃𝑟[𝑥|𝛼] we use 

the method of “pseudo-measurements” [14] which have been 

applied in the domain of Kalman filter based tracking but is 

not widely applied to image processing. A pseudo-

measurement is created by defining 𝑧𝑝 ≡ 0; thereby, creating 

a probability term which is exclusively a function of the state 

𝜃. With this trick, we can now represent a large number of 

common image priors models in a form required by (4). For 

example, the non-Gaussian TV prior from (3) is transformed 

into a Gaussian by using a non-linear measurement function 

ℎ𝑝(𝜃) = [

(𝛥ℎ1
2 + 𝛥𝑣1

2)
1/4

⋮

(𝛥ℎ𝑀𝑁
2 + 𝛥𝑣𝑀𝑁

2)
1/4

], and 

𝑄𝑝
−1 = 𝛼𝐼𝑀𝑁 𝑥 𝑀𝑁 . 

 

(4) 

(6c) 

(6b) 

(6a) 

(7a) 

(7b) 
(5) 
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 3.2. Expectation-Maximization for the Hyper-

Parameters 

At this point we could stop if we were willing to let the user 

manually tune the values of the hyper-parameters 𝛼 and {𝛽𝑘}. 

However, as mentioned above, this is undesirable. 

Unfortunately, the hyper-parameters, which are correctly 

represented as Gamma distributions [1,2], can’t be 

transformed into Gaussians through the method of pseudo-

measurements. Instead, we settle for making point source 

estimates of the hyper-parameters by using the EM method 

[5].  

 The EM method defines an expectation (E-step) and a 

maximization (M-step). The IF from (6a-6c) is effectively the 

E-step. In the M-step, we refine a parameter 𝜆 (which can 

represent either 𝛼 or 𝛽𝑘, as 

𝜆𝑛𝑒𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜆

𝐸𝜃[𝑙𝑛(𝑃𝑟 [𝜃, {𝑦𝑘}|𝜆])]. 

Equation (8) may be solved in closed-form to produce  

𝛽𝑘
𝑛𝑒𝑤 =

𝑁

‖𝑦𝑘−𝐵𝑘(𝑠𝑘)𝑥‖2+𝐸𝛥𝜃[𝛥𝜃𝑇𝑉𝑇𝑉𝛥𝜃]
, and 

𝛼𝑛𝑒𝑤 =
𝑀𝑁

‖ℎ𝑝(𝜃0)‖
2

+𝐸𝛥𝜃[𝛥𝜃𝑇𝑉𝑇𝑉𝛥𝜃]
, 

where 𝑉 = −𝐴𝐻 [𝐶𝑘(𝑠𝑘)
𝜕𝐶𝑘(𝑠𝑘)

𝜕𝑠𝑘1
𝑥 …

𝜕𝐶𝑘(𝑠𝑘)

𝜕𝑠𝑘𝑃
𝑥], which 

is [
𝜹𝒉𝒑

𝜹𝜽
]. The form of ℎ𝑝(𝜃) depends upon the choice of 

image prior model. 

 

4. COMPARISON OF IFEM AND VBI 

 

In order to compare the IFEM to VBI solutions, we make a 

comparison of the two SR methods applied to the outdoor 

scene shown in Figure 1. The scene was imaged from an 

altitude of 20m using a DJI Phantom 3 quadcopter drone with 

an attached 4K RGB camera. A drone is able to naturally 

provide the frame-to-frame motion required by multi-frame 

SR algorithms.  As a control, we apply the non-SR BiCubic 

up-sampling method followed by blur deconvolution using 

the Richardson-Lucy algorithm [15]. We then apply both the 

VBI algorithm from [1] (which is available as a Matlab 

software package [16]) as well as our IFEM algorithm. For 

detailed comparison, we focus on the car license plate as well 

as the pair of Siemens star resolution targets (see Figure 2).  

 The star targets, which are recommended by the ISO 

12233 standard [17], allow us to verify, quantitatively, that 

the two SR algorithms are actually performing the 

fundamental requirement of an SR algorithm; i.e., to increase 

resolution [18]. Resolution is defined by the ISO standard in 

terms of modulation transfer function (MTF) at high spatial 

frequencies. Figure 3 shows that both the VBI and IFEM 

algorithms provide similar MTF gains in the aliased region of 

the LR images (spatial frequencies greater than 0.5 

cycles/pixel) whereas the non-SR, BiCubic algorithm does 

not.      

 

5. CONCLUSION 

 

In this paper, we have derived a solution to the SR problem 

which provides the statistical advantages of a full Bayesian 

solution with reduced derivation complexity. We believe the 

reduced complexity will make the advantages of the 

statistical solution more accessible to the general practitioner 

than more difficult analytic methods, such as VBI. Using 

sample imagery, we were able to directly compare our 

solution to that obtained by a state-of-the-art VBI SR 

algorithm. 

 
Figure 1: Outdoor scene used to evaluate alternate SR 

algorithms (viewed from 20m altitude with a DJI Phantom 3 

drone) 

 
Figure 2: Comparison of license plate and Siemens star target 

features. BiCubic with deBlur (top), VBI with TV prior 

(center), and IFEM with TV prior (bottom) 

 
Figure 3: Comparison of MTF from Siemens star targets 
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