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ABSTRACT

In global models/priors (for example, using wavelet frames), there is a
well known analysis vs synthesis dichotomy in the way signal/image
priors are formulated. In patch-based image models/priors, this di-
chotomy is also present in the choice of how each patch is modeled.
This paper shows that there is another analysis vs synthesis dichotomy,
in terms of how the whole image is related to the patches, and that
all existing patch-based formulations that provide a global image
prior belong to the analysis category. We then propose a synthesis
formulation, where the image is explicitly modeled as being synthe-
sized by additively combining a collection of independent patches.
We formally establish that these analysis and synthesis formulations
are not equivalent in general and that both formulations are com-
patible with analysis and synthesis formulations at the patch level.
Finally, we present an instance of the alternating direction method
of multipliers (ADMM) that can be used to perform image denoising
under the proposed synthesis formulation, showing its computational
feasibility. Rather than showing the superiority of the synthesis or
analysis formulations, the contributions of this paper is to establish
the existence of both alternatives, thus closing the corresponding gap
in the field of patch-based image processing.

Index Terms— Image restoration, image denoising, patch-based
models, patch-based priors, analysis versus synthesis.

1. INTRODUCTION

The use of patches in image processing can be seen as an instance
of the “divide and conquer” principle: since it is admittedly very
difficult to formulate a global prior/model for images, patch-based
approaches use priors/models for patches (rather than whole images),
the combination of which yields the desired image prior/model. To
keep the discussion and formulation at their essential and focus on
the image modelling aspects, we will concentrate on image denoising,
arguably the quintessential image processing problem. Nevertheless,
much of what will be presented below can be easily extended (at least
in principle) to more general inverse problems.

There are basically two approaches to patch-based image denois-
ing. In earlier methods [3], [5], [6], patches are extracted from the
noisy image, then processed/denoised independently (or maybe even
collaboratively, as in BM3D [5]), and finally returned to their original
locations. Since the patches overlap (to avoid blocking artifacts),
there are several estimates of each pixel, which are combined by
some form of averaging (unweighted or weighted) This approach is
also used in the nonlocal Bayesian method [9], and in methods based
on Gaussian mixtures [13]. For a comprehensive review of these and
related methods, see [9]. Arguably, a conceptual flaw of these meth-
ods is that they obtain patch estimates without explicitly taking into
account that these will subsequently be combined additively. Con-
sequently, although some of these methods achieve state-of-the-art

results, they do not explicitly provide a global image prior/model.
A more recent class of approaches builds a global image model

based on a function computed from image patches, thus does not treat
them as independent, and takes into account that they are overlapping
patches of the same image; this approach was initiated with the
expected patch log-likelihood (EPLL) [15], and adopted by most of
the recent work [4], [12]. These methods do not have the conceptual
flaw pointed out in the previous paragraph and provide a coherent
global image model. In the synthesis vs analysis dichotomy, this
class of patch-based models can be seen as an analysis method (as
explained below in detail). This paper shows that there exists the
synthesis counterpart of EPLL; in other words, that the synthesis vs
analysis dichotomy is also present in the way the whole image and
the patches are related.

The analysis vs synthesis dichotomy in global image mod-
els/priors (e.g., based on wavelet frames, or total variation) has been
first formalized in [7], and further studied in [11]; more recently, it
has been ported to patch-wise models [4]. To the best of our knowl-
edge, this dichotomy has not been pointed out before concerning the
way in which patch-level models/priors are used to build a global
image models; that is precisely the central contribution of this paper.

The remaining sections of this paper are organized as follows.
After reviewing the classical analysis/synthesis dichotomy in Sec-
tion 2, we shown in Section 3 that the classical patch-based methods
follow an analysis formulation. Section 4 then introduces a synthe-
sis patch-based formulation, and its relationship with the analysis
counterpart is established in Section 5. In Section 6, we present an
ADMM algorithm to efficiently perform image denoising under the
proposed synthesis formulation. Finally, Section 7 concludes the
paper by referring to future work directions.

2. ANALYSIS VS SYNTHESIS IN IMAGE DENOISING

Before addressing patch-based models, we briefly review the analysis
and synthesis global formulations of image denoising [7], where the
goal is to estimate an unknown image x ∈ RN (N is the total number
of pixels in x, which is a vectorized version of the corresponding√
N ×

√
N image) from a noisy version thereof

y = x+w, (1)

where w is a sample of a white Gaussian noise field of zero mean
and (known) variance σ2, that is, p(y|x) = N (y;x, σ2I).

The classical approach to estimate x from y is to adopt (or learn)
a prior pX for the unknown x and seek a maximizer of the posterior
density (a maximum a posteriori–MAP–estimate)

x̂MAP ∈ argmax
x

p(x|y) = argmin
x

1

2σ2
‖y−x‖22−log pX(x), (2)

where 1
2σ2 ‖y − x‖22 = − log p(y|x), up to an irrelevant constant.

The analysis and synthesis formulations build priors for x as follows.
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Analysis: in this formulation, the prior pX takes the form

− log pX(x) = ϕ(Fx) + b, (3)

where b is a constant and F a linear (analysis) operator. In
this case, the MAP estimate takes the form

x̂MAP-A ∈ argmax
x

p(x|y) = argmin
x

1

2σ2
‖y−x‖22+ϕ(Fx),

(4)
where MAP-A stands for MAP-analysis.

Synthesis: here, the starting point is to assume that x is linearly
synthesized/represented according to x = Gθ, where θ is a
vector of coefficients, and the prior is formulated on θ rather
than directly on x; once an estimate θ̂ is obtained, the corre-
sponding estimate of x is simply x̂ = Gθ̂. In summary,

x̂MAP-S = Gθ̂, where θ̂ ∈ argmin
θ

1

2σ2
‖y−Gθ‖22 + ζ(θ),

(5)
and ζ(θ) = − logΘ(θ) is a negative log-prior on θ.

One of the main distinguishing features of analysis and synthesis for-
mulations is that in the former the object of the estimation procedure
is the image itself, whereas in the latter, one estimates a representation
from which the image estimate is synthesized.

3. PATCH-ANALYSIS FORMULATION

3.1. Expected Patch Log-likelihood

A central tool in most patch-based approaches is a collection of
operators {Pm, m = 1, ...,M} that extracts M patches from a
given image of size

√
N ×

√
N ; each Pm can be seen as a binary

matrix with size n × N , where n is the total number of pixels in
each patch (assumed square, of size

√
n×
√
n). The standard way

of formulating a patch-based prior is by writing

pX(x) =
1

Z

M∏
m=1

f(Pmx), (6)

where f : Rn → R+ is a function expressing the patch-wise prior
distribution and Z is a normalizing constant. Function f may itself
be a probability density function (pdf), e.g., a GMM, in which case
this prior is an instance of a so-called product of experts (PoE [8]).
However, f does not need to be a pdf, as long as it takes non-negative
values; in fact, (6) can also be seen as a factor graph model, where
each factor corresponds to a patch and the all factors have the same
function f [14]. Moreover, this prior is also equivalent to the formu-
lation known as EPLL (expected patch log-likleihood [15]), although
EPLL was not originally interpreted as a prior.

Given a noisy image y, a MAP estimate of x is given by

x̂MAP-A ∈ argmin
x

1

2σ2
‖y − x‖22 −

M∑
m=1

log f(Pmx). (7)

3.2. Half Quadratic Splitting and ADMM

To tackle the large-scale optimization problem in (7), the so-called
half quadratic splitting strategy replaces it with

x̂MAP-A ∈ argmin
x

min
v

1

σ2
‖y − x‖22 + β

M∑
m=1

‖vm − Pmx‖22

−2
M∑
m=1

log f(vm), (8)

where v = (vm, m = 1, ...,M), which obviously becomes equiva-
lent to (7) as β →∞ [15]. The optimization problem in (8) is tackled
by alternating between minimizing with respect to v and x, while
slowly increasing β. Other strategies for setting β have also been
proposed [15].

An obvious alternative (as recently mentioned in [10]) is to refor-
mulate (7) as a constrained problem

x̂MAP-A = argmin
x

1

2σ2
‖y − x‖22 −

M∑
m=1

log f(vm) (9)

subject to vm = Pmx, for m = 1, ...,M

and tackle it with ADMM (alternating direction method of multipli-
ers) [2]. Of course, convergence of ADMM for this problem can only
be guaranteed if the negative log factors − log f are convex; this is
not the case if f is a GMM, but it is true if − log f is an `r norm or
the r-th power thereof, e.g., − log f(vm) = ‖vm‖rr , with r ≥ 1.

Examining (8) (with β →∞) or (9) reveals that this formulation
seeks a consensus among the patches, in the sense that the several
replicates of each pixels that exist in different patches are forced to
agree on a common value for that pixel. In other words, the clean
patches are not modelled as additively generating a clean image,
and are merely used to write a joint prior pX that factorizes across
overlapping patches.

3.3. Identification as Analysis Formulation

The estimation criterion in (7) clearly falls in the analysis-type cat-
egory [7], since it considers the image itself as the object to be
estimated and as the argument of the prior. However, as a generative
model for clean images, its meaning is not very clear, since it is not a
trivial task to obtain samples from this distribution.

To obtain a more compact notation, let P : RN → RMn be the
operator (an Mn×N matrix) that extracts the set of M patches, i.e.,

Px =

P 1x
...

PMx

 ∈ RMn. (10)

The prior pX may then be written as

pX(x) ∝ pV (Px), (11)

where pV denotes a density defined in RMn according to

pV (v) =

M∏
m=1

f(vm). (12)

With this notation, the MAP denoising problem (7) can be written as

x̂MAP-A ∈ argmin
x

1

2σ2
‖x− y‖22 − log pV (Px), (13)

which clearly reveals the analysis nature of this formulation (see (4)).

3.4. Patch level Models

We stress that the analysis/synthesis dichotomy addressed in this pa-
per concerns the way in which an image relates to its patches, not the
way the patches themselves are modelled. In fact, the patch-analysis
formulation just reviewed is compatible with a synthesis patch model,
e.g., one that models each patch Pmx as linear combination of el-
ements of some dictionary D, with coefficients γm equipped with
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some prior pΓ (for example, a sparsity-inducing prior, as in [12]).
Using the half quadratic splitting approach, the formulation becomes

x̂MAP-A ∈ argmin
x

min
γ

1

σ2
‖y − x‖22 + β

M∑
m=1

‖Dγm − Pmx‖22

−2
M∑
m=1

log pΓ(γm). (14)

where γ = (γm, m = 1, ...,M). Naturally, the patch-analysis
formulation is also compatible with an analysis patch model [4], by
using a patch prior of the form f = φ ◦A, i.e., f(v) = φ(Av), for
some function φ : Rs → R+ and matrixA ∈ Rs×n.

To identify the analysis/synthesis dichotomy in terms of how
the patches are related to the underlying image, not in terms of how
the patches are modelled, we refer to the formulation reviewed in
this section as patch-analysis and to its synthesis counterpart (to be
introduced in the next section) as patch-synthesis.

4. PATCH-SYNTHESIS FORMULATION

We now present the patch-synthesis formulation, which can be sum-
marized as follows: the clean image is generated by additively com-
bining a collection of patches; the patches themselves follow some
probabilistic model, but are a priori mutually independent.

Consider a collection of patches {zm ∈ Rn, m = 1, ...,M}
and let image x be synthesized from these patches by combining
them additively according to

x =

M∑
m=1

Qm zm, (15)

where matricesQm ∈ RN×n are such that they average the values
in the several patches that contribute to a given pixel of x.

A simple 1D example will help clarify the structure of theQm

matrices. Consider that x = [x1, x2, x3, x4]
T is produced by com-

bining all the consecutive 2-element patches (with periodic boundary
conditions), which correspond to the subsets of components {1, 2},
{2, 3}, {3, 4}, and {4, 1}. That is, M = 4 and

Q1 =

1/2 0
0 1/2
0 0
0 0

 , Q2 =

 0 0
1/2 0
0 1/2
0 0

 , (16)

Q3 =

 0 0
0 0

1/2 0
0 1/2

 , Q4 =

 0 1/2
0 0
0 0

1/2 0

 . (17)

Stacking all the patches in vector z ∈ RMn and considering a
matrixQ = [Q1 · · ·QM ] ∈ RN×(Mn), the synthesis expression in
(15) can be written compactly as

x = Qz. (18)

With the patches modelled as independent and identically dis-
tributed samples of some patch-wise pdf g, their joint log-prior is

log pZ(z) =

M∑
m=1

log g(zm). (19)

Notice that obtaining samples from (19) is as simple as obtaining
samples from g itself. Consequently, generating image samples under
this synthesis model simply corresponds to generating samples from
(19) and then multiplying them by Q. This is in contrast with the
patch-analysis prior (6), where, even if f is a valid pdf, it is not trivial
to obtain samples from pX .

The resulting MAP denoising criterion can now be written as

x̂MAP-S = Qẑ, where ẑ ∈ argmin
z

1

2σ2
‖Qz − y‖22 − log pZ(z).

(20)
As the patch-analysis model, the patch-synthesis formulation that

we have just presented is compatible with both analysis and synthesis
priors for the patches, and of course with any valid pdf for vectors
in Rn. An analysis formulation simply amounts to choosing a patch
prior of the form g = ψ ◦ B, i.e., g(zm) = ψ(Bzm), for some
function ψ : Rs → R+ and matrixB ∈ Rs×n.

In a synthesis formulation, each patch zm is synthesized using
some dictionary D as zm = Dγm, and the γm follow some prior
pΓ; stacking all the patch coefficients in vector γ, we can write
z = ∆γ (where ∆ is a block-diagonal matrix with M replicas of
D), thus the MAP denoising criterion becomes

x̂MAP-S = Q∆γ̂, (21)

where

γ̂ ∈ argmin
γ

1

2σ2
‖Q∆γ − y‖22 − log qΓ(γ). (22)

5. RELATIONSHIP BETWEEN THE ANALYSIS AND
SYNTHESIS FORMULATIONS

Leaving aside for now the choice of the patch priors, let us focus on
the relationship between formulations (13) and (20). The key obser-
vation underlying the relationship between these two formulations is
that (assuming the patch structure in both formulations is the same)

QP = I, (23)

where I denotes the identity matrix, but in general

QP 6= I. (24)

In other words,Q is a left pseudo-inverse ofP . To prove (23), simply
notice that if a collection of patches is extracted from some image
and then these patches are used to synthesize an image by averaging
the overlapping pixels, an identical image is obtained. Of course, the
converse is not true, in general: if an image is synthesized by averag-
ing the overlapping pixels of a collection of patches, and then patches
are extracted from the synthesized image, there is no guarantee that
these patches are equal to the original ones, thus proving (24). In the
trivial and uninteresting cases where the patches are singletons, or
non-overlapping, we would haveQP = I .

As shown in [7], given the analysis formulation (13), an equiva-
lent synthesis formulation is

x̂MAP-A = Qẑ, where ẑ ∈ argmin
z

1

2σ2
‖Qz − y‖22 − log pV (z),

subject toz ∈ range(P ),

(25)

where the constraint z ∈ range(P ) enforces z to be in the subspace
spanned by the columns of P . Notice that this constraint corresponds
to having a collection of patches extracted from some image, i.e., it
forces the patches to agree on the value of each shared pixel. Since
(20) does not enforce this constraint, it is not, in general, equivalent
to the patch-analysis formulation (13).
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6. ADMM FOR PATCH-SYNTHESIS DENOISING

In this section, we derive an instance of ADMM to deal with (20).
The first step is to rewrite it as a constrained problem,

min
z,u

1

2σ2
‖Qz − y‖22 + ξ(u),

subject to z = u,

(26)

where

ξ(u) = − log pZ(u) =

M∑
m=1

(− log g(um))︸ ︷︷ ︸
ξm(um)

(27)

is the negative log-prior, or regularizer. ADMM for this problem
takes the form

z(t+1) = argmin
z

1

2σ2
‖Qz − y‖22 +

ρ

2
‖z − u(t) − d(t)‖22

u(t+1) = argmin
u

ξ(u) +
ρ

2
‖z(t+1) − u− d(t)‖22

d(t+1) = d(t) + z(t+1) − u(t+1)

The update equation for u(t+1) is a denoising step. Due to the
separability of the squared `2 norm and of ξ (see (27)), this can be
separately solved with respect to each patch: for m = 1, ...,M ,

u(t+1)
m = argmin

um

ξm(um) +
ρ

2
‖z(t+1)

m − um − d(t)
m ‖22, (28)

which is simply the proximity operator of (1/ρ)ξm [1], computed at
d

(t)
m −z(t+1)

m . In a Bayesian viewpoint, (28) corresponds to obtaining
the MAP estimate of um from observations d(t)

m − z(t+1)
m , assuming

additive white Gaussian noise of variance 1/ρ and a negative log-
prior ξm. If the ξm are convex, this MAP estimate is unique, due to
the strict convexity of the quadratic term in (28).

Computing z(t+1) corresponds to solving an unconstrained
quadratic problem, the solution being

z(t+1) =
(
QTQ+ σ2ρI

)−1(
QTy + σ2ρ (u(t) + d(t))

)
. (29)

The bottleneck in this update equation seems to be the matrix inver-
sion, since QTQ is a huge (Mn) × (Mn) matrix. However, this
inversion can be solved very efficiently by resorting to the Sherman-
Morrison-Woodbury matrix inversion formula. In fact,

(
QTQ+σ2ρ I

)−1
=

1

σ2ρ

(
I−QT (σ2ρ I+QQT )−1Q

)
, (30)

where matrix (σ2ρ I+QQT ) is diagonal, thus its inversion is trivial.
To prove thatQQT is diagonal, recall thatQ =

[
Q1 Q2 · · ·QM

]
,

thus

QQT =

M∑
m=1

QmQ
T
m. (31)

The element (i, j) of matrixQmQ
T
m ∈ RN×N is the inner product

between the i-th and the j-th rows of Qm. Since each pixel in the
m-th patch contributes to one and only one pixel in the synthesized
image, the rows of Qm have disjoint support, thus (i 6= j) ⇒
(QmQ

T
m)i,j = 0, that is,QmQ

T
m has no non-zero elements outside

of its main diagonal, thus is a diagonal matrix. Finally, sinceQQT

is a sum of diagonal matrices, it is a diagonal matrix.

It is also easy to obtain explicitly the elements of the diagonal of
QQT . The diagonal elements (QmQ

T
m)i,i are given by

(QmQ
T
m)i,i =

n∑
j=1

((Qm)i,j)
2. (32)

If the m-th patch contributes to pixel i, the sum in (32) contains
exactly one non-zero term, thus it is equal to the square of the weight
with which the m-th patch contributes to the synthesis of pixel i. If
the m-th patch does not contributes to pixel i, then (QmQ

T
m)i,i = 0.

Finally, since the weight with which each patch element contributes
to each pixel equals the inverse of the number of patches that con-
tributes to that pixel, (QQT )i,i is equal to the inverse of the number
of patches that contribute to pixel i. Referring to the example in
(16)–(17), we have simply QQT = (1/2)I , because each pixel is
synthesized from two patches.

Finally, letting q = diag
(
(σ2ρI + QQT )−1

)
, and denoting

s(t) = QTy + σ2ρ(u(t) + d(t)), we can write the update equation
(29) as

z(t+1) =
1

σ2ρ

(
s(t) −QT (q � (Qs(t))

))
, (33)

where � denotes element-wise product between two vectors. The
leading cost of this update is that of the matrix-vector products in-
volvingQ andQT , which is O(MNn); all the other operations in
(29) have lower computational cost.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have revisited patch-based image priors under the
light of the synthesis vs analysis dichotomy. After showing that the
classical patch-based image models (namely the EPLL) corresponds
to an analysis formulation, we have proposed a patch-synthesis for-
mulation, and analyzed its relationship with the analysis formulation,
showing that they are, in general, not equivalent. Finally, we have
shown how to address image denoising under the proposed formula-
tion, via an ADMM algorithm.

We stress again that the purpose of this paper is not to introduce
a new particular image prior, but a general patch-based synthesis
formulation/framework, which (to the best of our knowledge) was
missing from the literature on patch-based image processing, and
which can be instantiated with many different patch models/priors.
For this reason, we have abstained from presenting experimental
results; these would critically depend on the choice and estimation of
a particular patch model, which is not the focus of this paper.

Ongoing work includes the development of efficient algorithms
for learning patch models under the assumption that they will be used
in a synthesis formulation.
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