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ABSTRACT

In this paper, we propose a blind motion deblurring method
based on sparse representation and structural self-similarity
from a single image. The priors for sparse representation and
structural self-similarity are explicitly added into the recovery
of the latent image by means of sparse and multi-scale non-
local regularizations, and the down-sampled version of the
observed blurry image is used as training samples in the dic-
tionary learning for sparse representation so that the sparsity
of the latent image over this dictionary can be guaranteed,
which implicitly makes use of multi-scale similar structures.
Experimental results on both simulated and real blurry im-
ages demonstrate that our method outperforms existing state-
of-the-art blind deblurring methods.

Index Terms— Blind deconvolution, deblurring, sparse
representation, structural self-similarity

1. INTRODUCTION

Motion blur caused by camera shake has been one of the most
common artifacts in digital imaging. Blind image deconvolu-
tion is the problem of recovering the latent (unblurred) image
from the observed blurred image when the blur kernel is un-
known. Despite over three decades of research in the field,
blind deconvolution still fails to cope with real-world photo-
s with unknown kernels. More recently, blind deconvolution
has received renewed attention since Fergus et al.’s work [1].

If a motion blur is shift-invariant, it can be modeled as the
convolution of a latent image with a motion blur kernel:

y = h ∗ x+ n (1)

where ∗ is the convolution operator, y is the observed blurred
image, h is the blur kernel, x is the latent image and n is
noise. In blind deconvolution, the motion blur kernel is un-
known, and the recovery of the latent image becomes an ill-
posed inverse problem.

Recently, impressive progress has been made in removing
motion blur given a single image. Some methods explicitly
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or implicitly exploit edges for kernel estimation [2, 3, 4]. In
[3, 4], strong edges are predicted from the estimated latent
image in the prediction step and then used for kernel estima-
tion. Unfortunately, the shock filter could over-sharpen image
edges, and is sensitive to noise. Another family of methods
exploit various sparse priors for either the latent image x or
the motion blur kernel h, and formulate the blind deconvolu-
tion as a joint optimization problem with some regularization-
s on both h and x [1, 5, 6, 7, 8]. However, the sparse priors
always prefer trivial solutions, that is, the delta kernel and
the blurry image, because blur reduces the overall gradient
magnitude. More present-day works often involve priors over
larger neighborhoods (gradient filters consider 2 or 3 pixels)
or image patches. Michaeli and Irani [9] use the cross-scale
patch recurrence property as a prior for blind deblurring.

In this paper, we focus on the regularization approach us-
ing patch priors. We incorporate the sparsity of image patches
over a specific dictionary image and the multi-scale nonlo-
cal regularization as constraints and propose a blind motion
deblurring method based on sparse representation and struc-
tural self-similarity from a single image. The priors for s-
parse representation and multi-scale structural self-similarity
are explicitly added into the recovery of the latent image by
means of regularization, and the down-sampled version of the
observed blurry image is used as training samples in the dic-
tionary learning for sparse representation so that the sparsity
of the latent image over this dictionary can be ensured, which
implicitly makes use of multi-scale similar structures. Finally,
we take an approximate approach to solve the resulting min-
imization problem by alternately optimizing the blur kernel
and the latent image in a coarse-to-fine framework.

2. SPARSE REPRESENTATION AND IMAGE
STRUCTURAL SELF-SIMILARITY

2.1. Sparse Representation

Image patches can always be represented well as a sparse lin-
ear combination of atoms in an appropriate dictionary. Sup-
pose the image patch QjX ∈ Rn can be represented sparsely
over Ψ ∈ Rn×t, that is:

QjX = Ψαj , ∥αj∥0 ≪ n (2)
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where Ψ = [ψ1, · · · ,ψt] ∈ Rn×t is referred to as the dictio-
nary, ψj ∈ Rn for j = 1, · · · , t is the atom of the dictionary
Ψ, α = [α1, · · · , αt]

T ∈ Rt is the representation coefficient
of QjX and ∥αj∥0 counts the nonzero entries in αj .

Given a set of training samples si ∈ Rn, i = 1, · · · ,m,
here m is the number of training samples, dictionary learning
aims to find a dictionary Ψ that forms sparse representations
αi, i = 1, · · · ,m for the training samples by jointly optimiz-
ing Ψ and αi, i = 1, · · · ,m as follows:

min
Ψ,α1,··· ,αm

m∑
i=1

||si −Ψαi||22 s.t. ∀i ∥αi∥0 ≤ T (3)

where T ≪ n controls the sparsity of αi for i = 1, · · · ,m.
We use the K-SVD method [10] to obtain the dictionary

Ψ. Then, for each patch QjX , we have to derive the sparse
representation coefficients. Eq.(2) can be formulated as the
following ℓ0-norm optimization problem:

min
αj

||αj ||0 s.t. ∥QjX −Ψαj∥22 ≤ ϵ (4)

where ϵ is a parameter that controls the representation error.

2.2. Multi-scale Structural Self-Similarity

Multi-scale structural self-similarity refers to that similar im-
age structures, both within the same scale and across different
scales, frequently recur in natural images explicitly or implic-
itly. More specifically, multi-scale similar structures are in
general described by in-scale and across-scale similar image
patches. Glasner et al. [11] perform an experiment to show
that most image patches in a natural image has multiple simi-
lar patches in down-sampled versions of the image.

Suppose that X ∈ RN and Xα ∈ RN/α2

represent
the sharp image and its down-sampled version respectively,
where N is the size of the sharp image, α is the downscaling
factor. The sharp image patch and its down-sampled version
can be represented as QjX and RiX

α, here Qj ∈ Rn×N

and Ri ∈ Rn×N/α2

are matrices extracting the jth and ith
patch from X and Xα respectively, and n is the size of the
image patch. Since patches repeat across scales in a sharp
natural image, for each patch QjX in the sharp image X ,
we can search for its similar patches patches RiX

α in Xα

using block matching. The linear combination of the L most
similar patches of QjX (put into the set Sj) is used to predict
QjX , that is, the prediction can be represented as,

QjX ≈
∑
i∈Sj

wj
iRiX

α (5)

where

wj
i =

exp(−∥QjX −RiX
α∥22/h)∑

l∈Sj
exp(−∥QjX −RlX

α∥22/h)
(6)

is the weight and h is the control parameter of the weight.
The prediction error should be small and can be used as the
regularization in the blind deconvolution model.

3. BLIND DECONVOLUTION

3.1. Our Model

The key issue of the sparse representation is to identify a dic-
tionary that represents latent image patches in a sparse man-
ner. To make all sharp image patches represented sparsely
over the dictionary, the sharp image should be used to learn a
dictionary as training samples [12]. Unfortunately, the sharp
image is an unknown quantity to be restored. A database
consisting of enormous images or the blurry image can al-
so be used as training samples to train the dictionary [13].
However, when a database is used, the database needs to pro-
vide patches similar to the patches in the sharp image, which
cannot hold all the time, and numerous samples are needed
to construct the dictionary, which may lead to an inefficient
learning; when the blurry image is used, the sparsity of sharp
image patches over the dictionary cannot be guaranteed.

In our method, we use an over-complete dictionary trained
on down-sampled blurry patches to help exploit the sparse pri-
or of sharp patches. Michaeli and Irani [9] show that image
patches from the down-sampled version are more similar to
those from the sharp image. When patches repeat across s-
cales in a sharp image, the cross-scale similarity significantly
diminishes in the blurry version. They further demonstrate
that shrinking an image by a factor of α produces a pool of
patches of the same size that are α-times sharper. In the dic-
tionary learning for sparse representation, therefore, we use
similar patches of the down-sampled blurry image as training
samples to construct the dictionary, which makes sharp im-
age patches have sparse representation over the learned dic-
tionary.

In our model, we incorporate both sparse representation
and structural self-similarity as priors to guide the recovery
of the latent image. With these priors as regularization, we
get the following joint minimization problem of both image
and blur kernel:

min
x,h

{
∥∇y −∇x⊗ h∥22 + λc

∑
j

∥QjX −Ψαj∥22

+λs

∑
j

||QjX −
∑
i∈Sj

wj
iRiX

α∥22 + λg||∇x∥22

+λh∥h∥22
}

s.t. ∀j ∥αj∥0 ≤ T

(7)

where ∇ = {∂x, ∂y} denotes the spatial derivative operator
in two directions, Ψ is the dictionary learned by the down-
sampled blurry image, Xα is the down-sampled version of
X by a factor α, and λc, λs, λg and λh are regularization
weights. In Eq.(7), the first term is the constraint of the ob-
servation model, the second term is the constraint of sparsity,
the third term is the constraint of structural self-similarity, the
fourth term is the constraint of the smoothness of the latent
image, and the fifth term is the constraint of the blur kernel.
We estimate the blur kernel h by solving Eq.(7), and once
the blur kernel has been estimated, recover the latent image x
from y by performing a non-blind deconvolution method.
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3.2. Optimization

Following most existing methods, we take an iterative process
to solve Eq.(7) that alternately optimizes the motion blur ker-
nel and the latent image. The iterative process is initialized
with k = 0 and x̂0 = y. Our method need perform deconvo-
lution in the Fourier domain. To avoid ringing artifacts at the
image boundaries, we process the image near the boundaries
using the simple edgetaper command in Matlab.

3.2.1. Optimizing h

In this step, we fix x̂k and update ĥk+1. The objective func-
tion is simplified to:

ĥk+1 = argmin
h

{
∥∇y −∇x̂k ⊗ h∥22 + λh∥h∥22

}
(8)

Eq.(8) is a quadratic funciton of unknown ĥk+1, which has a
close-form solution for ĥk+1:

ĥk+1 = F−1

(
F(∂xx̂k)F(∂xy) + F(∂yx̂k)F(∂yy)

F(∂xx̂k)2 + F(∂yx̂k)2 + λh

)
(9)

where F(·) and F−1(·) denote the fast Fourier transform and
inverse Fourier transform respectively. F(·) is the complex
conjugate operator.

3.2.2. Optimizing x

In this step, we fix ĥk+1, and given x̂k update x̂k+1. The
objective function reduces to:

x̂k+1 = argmin
x

{
∥∇y −∇x⊗ ĥk+1∥22

+λc

∑
j

∥QjX −Ψαj∥22

+λs

∑
j

∥QjX −
∑
i∈Sj

wj
iRiX

α∥22

+λg||∇x∥22
}

s.t. ∀j ||αj∥0 ≤ T

(10)

Rearranging y in vector form, denoted by Y ∈ RN , and
rewriting the convolution of the blur kernel and the latent im-
age in matrix form, Eq.(10) can be expressed as

X̂k+1 = argmin
X

{
∥GxY −Hk+1GxX∥22

+∥GyY −Hk+1GyX∥22
+λc

∑
j

∥QjX −Ψαj∥22

+λs

∑
j

∥QjX −
∑
i∈Sj

wj
iRiX

α∥22

+λg(∥GxX∥22 + ∥GyX∥22)
}

s.t. ∀j ∥αj∥0 ≤ T

(11)

where Gx and Gy ∈ RN×N are the matrix forms of the
partial derivative operators ∂x and ∂y in two directions re-
spectively; Hk+1 ∈ RN×N is the blur matrix. Letting G =

GT
xGx + GT

y Gy , and setting the derivative of Eq.(11) w.r.t
X to zero, we derive(

(HT
k+1Hk+1 + λg)G+ (λc + λs)

∑
j

QT
j Qj

)
X =

HT
k+1GY + λc

∑
j

QT
j Ψαj + λs

∑
j

QT
j

∑
i∈Sj

wj
iRiX

α

(12)
Both sparse representation coefficients αj and the down-
sampled image Xα on the right-hand side of Eq.(12) depend
on unknown X , so there is no close-form solution. We can
approximately solve Eq.(12) with the following procedure:
1) Estimate the intermediate latent image through the con-
straint term of sparse representation, denoted by Zc.

For each patch QjX̂k in X̂k, the OMP method [14] is
used here to obtain the sparse representation coefficients over
the dictionary Ψ by approximately solving Eq.(4). The re-
constructed image patch QjX̂k can be represented sparse-
ly over Ψ, and the representation coefficient is αj , that is,
QjX̂k = Ψαj . Then Zc can be reconstructed by averaging
all reconstructed image patches Ψαj as follows:

Zc =
(∑

j

QT
j Qj

)−1∑
j

QT
j Ψαj (13)

2) Estimate the intermediate latent image through the con-
straint term of multi-scale structural self-similarity, denoted
by Zs.

For each patch QjX̂k in X̂k, we search for its similar
patches RiX̂

α

k in the down-sampled image X̂
α

k of X̂k,
and use the linear combination of these similar patches∑

i∈Sj
wj

iRiX̂
α

k to reconstruct the current patch. Then Zs

can be reconstructed by averaging all reconstructed image
patches as follows:

Zs =
(∑

j

QT
j Qj

)−1∑
j

QT
j

∑
i∈Sj

wj
iRiX̂

α

k (14)

3) Given Zc and Zs, solve x̂k+1

Substituting
∑

j Q
T
j Ψαj withZc and

∑
j Q

T
j

∑
i∈Sj

wj
iRiX

α

with Zs as an approximation, Eq.(12) can be rewritten as:(
(HT

kHk + λg)G+ (λc + λs)nI
)
X =

HT
kGY + λcnZc + λsnZs

(15)

It is easy to prove that
∑

j Q
T
j Qj = nI in Eq.(15), here n is

the size of image patch, and I is the identity matrix of size N .
Since it is a linear equation w.r.t. X , Eq.(15) can be solved
by direct matrix inversion or the conjugate gradient method.
We solve it in the frequency domain using Eq.(16), where zc
and zs represent Zc and Zs in image array form.

4. EXPERIMENTS

4.1. Quantitative Evaluation on Synthetic Datasets

We test our method on the synthetic database provided by Sun
et al. [15]. This database comprises 640 large natural images
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x̂k+1 = F−1

F(ĥk+1)
(
F(∂x)F(∂x) + F(∂y)F(∂y)

)
F(y) + λcnF(zc) + λsnF(zs)(

F(ĥk+1)F(ĥk+1) + λg

)(
F(∂x)F(∂x) + F(∂y)F(∂y)

)
+ λcn+ λsn

 (16)

of diverse scenes, which were obtained by synthetically blur-
ring 80 high-quality images with the 8 blur kernels from [5]
and adding 1% white Gaussian noise. The kernels range in
size from 13×13 to 27×27. We present qualitative and quan-
titative comparisons with the state-of-the-art blind deblurring
methods [3, 4, 6, 9, 15, 16, 17]. Following the setting of [15],
we initialize that the size of the kernel is 51×51 and apply the
kernel estimated by each method to perform deblurring with
the non-blind deblurring method of [18] to recover latent im-
ages.

We measure the quality of an estimated blur kernel using
the error ratio measure r [5]. The smaller r is, the better the
reconstruction. Fig.1 shows the cumulative error ratio over
the entire dataset for each method. It is empirically observed
by [9] that the deblurring results are still visually pleasing for
error ratios r ≤ 5, when using the non-blind deblurring of
[18]. Table 1 lists the average error ratio and the success rate
over 640 images for each method. The success rate is the
percent of images which obtain good deblurring results (i.e.,
an error ratio below 5). Table 1 shows our method achieves
the lowest average error ratio and the highest success rate.
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Fig. 1: Cumulative distribution of error ratios on Sun et al.
dataset [15]

4.2. Qualitative Comparison on Real Images

We experiment with real images which are blurred with large
kernels. Fig.2 shows a comparison example with the state-
of-the-art blind deconvolution methods [4, 6, 9, 15, 17, 19].
In this part, we also use the non-blind deconvolution of [18]
to recover latent images. Compared with other methods, our
method obtains robust blur kernels, suffers from much less
ringing artifact and reveals sharper details in the recovered
images.

Table 1: Quantitative comparison of different methods over
the dataset [15]

success rate% mean error rate

Ours 96.88 2.2181

Michaeli & Irani [9] 95.94 2.5662

Sun et al. [15] 93.44 2.3764

Xu & Jia [4] 85.63 3.6293

Levin et al. [6] 46.72 6.5577

Cho & Lee [3] 65.47 8.6901

Krishnan et al. [17] 24.49 11.5212

Cho et al. [16] 11.74 24.7020

(a) Blurry image

(e) Krishnan et
al.[17]

(b) Xu & Jia[4]

(f) Michaeli et
al.[9]

(c) Levin et al.[6]

(g) Perrone et
al.[19]

(d) Sun et al.[15]

(h) Our method

Fig. 2: Visual comparisons with some state-of-the-art meth-
ods on real images with unknown kernel.

5. CONCLUSIONS

In this paper, we exploit the priors on the latent image from
the multi-scale structural self-similarity between cross-scale
similar patches. On one hand, the prior from multi-scale sim-
ilar structures is added into the latent image by means of
the multi-scale nonlocal regularization according to the cor-
respondence between multi-scale similar patches; on the oth-
er hand, the dictionary learning for sparse representation uses
the down-sampled version of observed blurry image as train-
ing samples so that the sparsity of the latent image over this
dictionary can be ensured. The experiments on both simulated
and real blurry images show that our algorithm can effectively
remove complex motion blurring from nature images.
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