
A Cache-based Bandwidth Optimized Motion

Compensation Architecture for Video Decoder

Meng Li1,2, Huizhu Jia1*, Xiaodong Xie1, Jason Cong2, Wen Gao1
1National Engineering Laboratory for Video Technology, Peking University, Beijing, China

2UCLA/PKU Joint Research Institute in Science and Engineering

{mmli, hzjia, donxie, wgao}@pku.edu.cn, cong@cs.ucla.edu

Abstract—In video decoder applications, motion

compensation (MC) is bandwidth consuming because of the

non-regular memory access. Especially with the popularity of

UHD video and the development of new coding standard

(HEVC), external memory bandwidth becomes a crucial

bottleneck. In this paper, we propose an area efficiency

cache-based bandwidth optimization strategy to minimize the

memory bandwidth. First a four-way parallel cache

architecture is described. Then partially replacement strategy

is proposed to further reduce memory bandwidth and power

consumption. At last a column based storage scheme is

provided to reduce the precharge/active frequency. We

realize this idea using high level synthesis, which allow

multiple iterations with quick turnaround time for micro

architecture changes, and the results show that the averagely

bandwidth reduction is up to 79.9% with moderate resource

utilization, which outperforms the state-of-the-art works.

Index Terms—bandwidth, MC, cache, decoder, HLS

I. INTRODUCTION

In video sequences, there is a strong correlation between

adjacent frames because of the successive movement of the

objects, and inter-frame prediction is used to eliminate the

temporal redundancy. One or more decoded frames are

used as reference frames, which typically stores in an

external memory such as double data rate synchronous

dynamic random access memory (DDR-SDRAM).

Accessing to these reference pixels for motion

compensation (MC) results in a great memory bandwidth

and power consumption. Based on the simulation, the MC

will take up to 75~83% memory bandwidth in H.264

without applying any MC bandwidth reduction technique

[1].

Several techniques have been proposed to reduce MC

bandwidth requirement in video decoder system. Tsai et al.

[2] proposed an interpolation window reuse (IWR) scheme

which load reference data according to macro-block (MB)

type. Wang et al. [3] proposed four motion compensation

memory access optimization strategies for H.264/AVC

decoder. Li et al. [4] proposed a classification scheme for

MB-level processing pipeline. These data reuse schemes

can reuse overlapped reference data by storing certain data

blocks in a register file and re-used by next blocks.

However, the performance is limited when the motion

vectors of neighboring blocks are different. Chuang et al.

[1] further proposed a cache-based MC architecture to

reduce both the reference data loading bandwidth and the

equivalent bandwidth from DRAM access overhead

latency. In recent years, as the successor to H.264, High

Efficiency Video Coding (HEVC) achieves better

performance but adds extra burden on complexity for

hardware implementation because of the new coding tools.

Coupled with the specification of Ultra High Definition

Television (UHDTV), memory bandwidth problem

becomes more severe. In [5], Wang et al. proposed a four-

bank parallel 2D cache organization and a pipelined Write-

Through mechanism (WTM) to achieve conflict-free

performance. Tikekar et al. [6] proposed a high-throughput

read-only cache combined with DRAM-latency-aware

memory mapping to reduce DRAM bandwidth. Although

these methods achieve better performance than the

previous, the area efficiency and complexity still have

large room to improve for reducing power consumption.

In this paper, we propose a cache-based bandwidth

optimized motion compensation architecture for the latest

video standard. We first describe the potential of cache-

based MC architecture and how the algorithm guiding the

cache design, including the cache size and refresh strategy.

Then a four-way parallel 2D cache architecture is proposed

to reuse the locality between references. The VLSI

architecture is implemented using high level synthesis [7]

tool which raises the level of abstraction beyond register

transfer level (RTL) and gives us better control over the

optimizations of the system architecture. By which we

explore a large design space and the experiments show that

the proposed architecture can achieve 79.9% bandwidth

reduction with moderate resource utilization.

II. BACKGROUND AND MOTIVATION

Inter frame prediction is known as searching a block

that is similar to the current one in a reference frame, and

the motion vector (MV) points to the position of the

matching block at the reference frame. In decoding process,

first we need to access the reference data for MC according

to the MV position, and then the reference data need to be

interpolated based on the MV type (integer-pixel or sub-

pixel). Our architecture design is based on the following

two important observations derived from an analysis of the

motion between adjacent frames.

Observation 1: Enormous data overlap but irregular

block size and directing position
*the corresponding author, Huizhu Jia is with Peking University, also with

Cooperative Medianet Innovation Center and Beida(Binhai) Information

Research.

1303978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

Fig 1. Data overlap of 7 sub-blocks within a 16x16 block

Fig 2. Motion correlation of sequence ‘BasketballDrill’

In the latest coding standard (such as HEVC, AVS2), it

adopts a flexible hierarchical structure for Coding Unit

(CU) and Prediction Unit (PU), where CU ranging from 8

to 64 while each CU can be further partitioned into

symmetric or asymmetric PUs. In addition, it supports a

longer 8-tap filter to realize more accurate interpolation.

Taking 8x8 PU for example, 15x15 reference pixels are

needed, around 72% data overhead are added on external

memory bandwidth.

As shown in Fig. 1, a 16x16 block in inter coded frame

is divided into 7 blocks, and the corresponding mating

blocks in the reference frame are shown by dotted line.

The shaded area in reference frame illustrates the required

pixels by each block. We can see that there are enormous

data overlap exist, and the darker area means more

frequently it is to be used in the reference frame. Although

there is a great potential to reuse these overlap data, it is

hard to realize efficiently simply by a data reuse buffer

because of the uncertainty of block size and the directing

position in reference frame. In the following sub-section,

we explore the statistical property in video sequence,

which guides the design of the proposed cache-based

motion compensation architecture.

Observation 2: Motion correlation of adjacent blocks
 Fig. 2 shows an example about the motion correlation

for sequence ‘BasketballDrill’, the red and green arrows

represent two motion vectors for each PU. We can see that

neighbouring PUs have the tendency of similar motion

directions. If so, when the current block accesses a certain

chunk of memory, its neighbouring blocks are likely to

access that location near it. We know that when the cache

size is too small, frequently data refreshing will occur as

the low hit rate. On the contrary, if the cache size is too

bank 0

bank 1

bank 2

bank 8

Cache mapping

cache word 0

cache word x

A cache line

(a)

Cache bank

Cache l ine 0

Cache l ine 1

Cache l ine N

Reference frame

(b)

RefIdx X_pox Y_pox bank offset

025183135

flag

36

Fig 3. (a) Data mapping in proposed cache organization

(b) Tag contents of cache block

large, there will be long loading latency and it is a huge

resource consumption. Following the experimental results

in [5], the hit rate of cache increases with the cache size,

but when the cache size reaches 64x64 pixels, the

increasing tends to flatten out. We suppose the reason is

that the correlation within a LCU is strong and the overlap

region takes a great proportion.

Unlike in the software applications, where there are

many looping and branching constructs, in real decoding

applications, the decoding sequence is raster scan order,

which is top to bottom and left to right. And from the

statistical results, in most cases, the motion vectors of

adjacent two LCU will not differ greatly (we marked as a

distance of 64). So in general, the reference area is also

correspondingly sliding from top to bottom and left to right

as raster scan order. It is most likely that the first block in

cache is the left and top reference data, which is the

farthest from the current block and the least likely to be

referred. So FIFO replacement strategy is considered and

its validity has also been confirmed by experiment.

III. ARCHITECTURE DESIGN

To alleviate the MC bandwidth requirement, we propose

a cache-based motion compensation architecture with

friendly DRAM access control. Our architecture design is

targeted on FPGA and described in C code, subsequently

converted into RTL automatically by High Level Synthesis

(HLS) tools, which raises the level of abstraction beyond

register transfer level and gives us efficiency in exploring

the optimizations of the hardware architecture.

A. Data Mapping Design

In our proposed cache architecture, we adopt a 2-D data

mapping strategy as shown in Fig. 3(a). To improve the

utilization of cache block, any block of data in reference

frame could map to a cache block, which has been

partitioned into 8 banks. A cache bank consists of N cache

line and a cache line consists of X cache word. The size of

a cache word is equivalent to the external memory bus

width, which is 64-bits in our design (using Xilinx Kintex-

7 FPGA KC705). Based on the observation in section 2,

we choose 64x64 as the size of one way cache block. Each

cache line represents 64 pixels in a line of image. Thus, a

1304

MV

Generator

Tag

Register

File

Cache

SRAM

Banks

Hit/Miss

Resolution

Replacement

Ctrl.

External Memory

Interpolation

Fetch Ctrl.

Fig 4. System architecture of proposed 4-way parallel cache

cache line composes of 8 cache words and each cache line

can be mapped to a unique cache bank. From the above,

we can see that each cache bank has 8 cache lines. To

increase the parallelism of BRAM access in FPGA, we use

a cyclic memory partitioning scheme which mapping

adjacent rows into different banks so that multiple data

accesses most likely access data in different banks. This

reduces the probability of changing rows in a bank to save

the latency on precharge/activate cycles.

To reduce the complexity, we use a 37-bit tag register to

store the information of one-way cache. As shown in Fig.

3(b), the tag register includes reference frame index

(RefIdx), x_postion (X_pos), y_postion (Y_pos), bank

number (bank) and offset in bank (offset). The RefIdx uses

four bit signal to represent at most 15 reference pixels.

X_pos and Y_pos indicate the location of pixels in a frame,

which support up to 8K UHDTV. To reduce bandwidth

and power consumption, we also use bank and offset signal

to achieve partially refreshing, which will be discussed in

next sub-section. In addition, flag is a one-bit signal to

indicate the availability of data to be replace. As long as

the data in cache has not been used for interpolation, the

flag signal is set to 1 and indicates it can be replaced for

storing new data.

B. 4-way Parallel Cache Organization

This section describes the system architecture of our

proposed four-way parallel MC cache with a partially

replacement strategy. In addition, we also propose a data

prefetch scheme to set up pipeline.

1) Four Parallel Data Flow

As shown in Fig. 4, the address of required pixels is

generated by MV Generator, and then Hit/Miss Resolution

compares this address with the information in four parallel

Tag Register File. Once hit, the index indicating target

pixels will be sent to cache SRAM, and the interpolation

module could fetch these data from cache directly. Note

that the flag of the hit cache should be set to 0 indicating

not available for rewriting. In case of miss, the

Replacement Control will decide which block to refresh, at

the same time Fetch Control accesses to external memory

and writes to cache. Subsequently, the cache tag for the

missed cache updates immediately after requesting from

external memory. There are four parallel paths of cache

SRAM and each connecting to the interpolation module as

cache miss cache hit

case 1 case 2 case 3 case 4

Fig 5. Cases for hit/miss resolution

Fig 6. Cache performance for different allocation scheme

the input data.

2) Partially Replacement Strategy

As described in section 2, we adopt FIFO replacement

policy in the proposed cache system, which means the

oldest cache will be replaced by new arrived data. To

further reduce memory bandwidth and power consumption,

we propose a partially replacement strategy. As shown in

fig. 5, we illustrate four cases of cache hit/miss resolution.

In case 1 and case 2, required pixels store in one or several

cache blocks, which can be directly used by interpolation.

In case 4, all cache blocks miss for the target pixels, and

FIFO replacement is adopted to rewrite one cache block.

But it can be seen in case 3, only a part of data missing in

cache. Instead of refreshing the entire cache block, we can

only refresh several cache lines, and fix the starting

position by ‘bank’ and ‘offset’ signal in tag register using

circular mapping strategy.

3) Data Organization in External Memory

To reduce the precharge/active frequency when

accessing data in external memory, the reference pixels are

stored in DDR by column instead of row. As the

processing unit moves as raster scan order from left to

right and top to bottom, it is most likely a few columns

need to be refresh in cache block. The column based

storage scheme changes the access pattern to load

reference data and alleviate the DRAM access overhead,

thus to reduce the memory bandwidth further.

C. Investigation on Bi-directional Prediction Mode

Bi-prediction performs motion compensation from two

reference frame lists rather than one for a better coding

performance, and two blocks of data are required. In

general, these two reference blocks come from two

different reference frames, thus may lead to cache miss.

HLS provides us significantly improved design

productivity compared to traditional RTL based design

flow, so we explore large design space of cache allocation

for bi-directional prediction to investigate the influence.

As shown in Fig. 6, ‘share’ means two reference frame

lists share a common 4-way cache architecture,

1305

TABLE I

HIT RATE AND BANDWIDTH REDUCTION RESULTS

Seq. Class QP

hit rate bandwidth reduction

configuration configuration

RA LD RA LD

Class A

30 91.28% 92.11% 80.49% 84.43%

35 89.09% 90.97% 78.32% 82.67%

40 86.23% 89.15% 76.26% 80.75%

45 83.06% 86.81% 74.59% 78.96%

Class B

30 93.32% 94.08% 80.82% 86.86%

35 91.57% 93.12% 78.15% 84.24%

40 89.23% 91.95% 75.43% 82.23%

45 87.34% 90.47% 73.86% 80.22%

Class C

30 92.27% 92.17% 82.70% 84.99%

35 90.76% 91.23% 81.04% 83.31%

40 88.38% 89.53% 78.85% 81.04%

45 86.04% 87.68% 77.12% 79.26%

Class D

30 93.48% 91.85% 85.22% 88.01%

35 92.27% 91.51% 82.76% 85.84%

40 91.13% 90.79% 80.47% 82.56%

45 91.26% 90.13% 78.75% 80.92%

Class E

30 87.57% 88.92% 76.18% 79.08%

35 85.86% 86.90% 74.79% 77.17%

40 86.45% 84.65% 73.86% 75.79%

45 85.54% 83.33% 72.99% 75.00%

Class F

30 92.19% 90.90% 81.59% 83.95%

35 91.06% 90.43% 79.37% 81.89%

40 89.54% 89.43% 77.33% 79.85%

45 86.63% 88.32% 75.94% 78.45%

average 89.54% 79.88%

 ‘proportion allocation 3:1’ stands for allocating 3 way

cache for list0, and 1 way cache for list1. It can be seen

that although with switching reference frame, 4-way cache

architecture is the best solution, which is chosen for the

final design.

IV. EXPERIMENTAL RESULT

To evaluate the efficiency of the proposed cache

architecture, we test both the hit rate and the bandwidth

reduction for several sequences. The baseline of bandwidth

reduction is the ideal bandwidth with no cache, which is

the exact number of reference pixels needed for

interpolation. We also show the synthesis result and

compare our work with the state-of-the-art works.

A. Cache Performance Evaluation

We conduct the experiment in accordance with the

common test conditions and test different sequences in

class A (2560x1600), class B (1920x1080), class C

(832x480), class D (416x240), class E (1280x720) and

class F (1024x768). Both the low-delay (LD) and random-

access (RA) configurations are tested with Quantization

Parameter (QP) varies from 30 to 45. Table I summarizes

the hit rate of cache and the bandwidth reduction of each

sequence. The simulation result shows that the average hit

rate of proposed cache architecture is up to 89.54%, and

the average bandwidth reduction of proposed scheme is

79.88%, which validate the high efficiency of proposed

cache architecture.

 B. Synthesis Result and Comparison

TABLE II

SYNTHESIS RESULT COMPARISON WITH PREVIOUS WORKS

 [4] [1] [5] [6] Proposed

Standard H.264 H.264 HEVC HEVC HEVC

ASIC

Library

/FPGA

device

UMC

0.18

UMC

90nm

TSMC

90nm
40nm

Xilinx

Kintex-7

Max

Frequency

100

MHz

166

MHz

250

MHz

200

MHz

200

MHz

Core Area 13K 72K 104K 126K 96K

Bandwidth

reduction
67.7% 71% 62.2% 67% 80%

The proposed MC cache architecture is first

described using C code, and then synthesized into RTL

using Xilinx Vivado HLS version 2013.2, subsequently

implemented into FPGA configuration by Xilinx ISE 14.4.

Our verification target is Xilinx Kintex-7 FPGA KC705

platform. The equivalent total gate count is about 96K.

Table II lists the comparison results of proposed scheme

with other works. Compared with the four previous

designs, the proposed design achieves the best

performance on bandwidth saving with moderate resource

utilization.

V. CONCLUSION

In this paper, we propose an efficient cache-based MC

architecture for HEVC decoder system to minimize the

memory bandwidth. First, we describe a four-way parallel

cache architecture including data mapping strategy and

data flow, then partially replacement strategy is proposed

to further reduce memory bandwidth and power

consumption. In addition, column based storage scheme is

proposed to precharge/active frequency. Our architecture

design is targeted on FPGA and described in C code,

subsequently converted into RTL automatically by high

level synthesis tools. Experimental results show that the

average bandwidth reduction is up to 79.9% with moderate

resource utilization, which outperforms the state-of-the-art

works.

ACKNOWLEDGEMENT

This work is partially supported by grants from National

High Technology Research and Development Program of

China (863 Program) under contract No.2015AA015903,

the National Science Foundation of China under contract

No. 61421062 and No.61520106004.

REFERENCES

[1] TD. Chuang et al. "Bandwidth-efficient cache-based motion

compensation architecture with DRAM-friendly data access

control." Acoustics, Speech and Signal Processing, 2009. ICASSP

2009. IEEE International Conference on. IEEE, 2009.

[2] CY. Tsai et al. "Bandwidth optimized motion compensation

hardware design for H. 264/AVC HDTV decoder." Circuits and

Systems, 2005. 48th Midwest Symposium on. IEEE, 2005.

[3] R. Wang, J. Li and C. Huang. "Motion compensation memory

access optimization strategies for H. 264/AVC decoder." Acoustics,

Speech, and Signal Processing, 2005. Proceedings.(ICASSP'05).

IEEE International Conference on. Vol. 5. IEEE, 2005.

1306

[4] Y. Li, Y. Qu and Y. He. "Memory cache based motion

compensation architecture for HDTV H. 264/AVC decoder."

Circuits and Systems, 2007. ISCAS 2007. IEEE International

Symposium on. IEEE, 2007.

[5] S. Wang, D. Zhou and S. Goto. "Motion compensation architecture

for 8K UHDTV HEVC decoder." Multimedia and Expo (ICME),

2014 IEEE International Conference on. IEEE, 2014.

[6] M. Tikekar et al. "A 249-Mpixel/s HEVC video-decoder chip for

4K ultra-HD applications." Solid-State Circuits, IEEE Journal of

49.1 (2014): 61-72.

[7] J. Cong, et al. "High-level synthesis for FPGAs: From prototyping

to deployment." Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on 30.4 (2011): 473-491

1307

