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ABSTRACT

We propose a novel approach for modeling and coding color
in images and video. Luminance is linearly correlated with
chrominance locally, as such we can predict color given the
luma value. Using the Steered Mixture-of-Experts (SMoE)
approach, the image is viewed as a stochastic process over 5
random variables including the 2-D pixel locations, 1 lumi-
nance and 2 chrominance values. We model this process as
a continuous joint density function by fitting a K-modal 5-D
Gaussian Mixture Model (GMM). As such, the chroma values
are predicted as the expectation of the conditional density. To
validate, the technique was integrated within JPEG showing
PSNR gains in the lower bitrate regions. A deeper analysis of
the tolerance of the activation function is given through recy-
cling color models in video sequences, yielding a high quality
reconstruction over a considerable range of frames.

Index Terms— Image coding, inter-channel predic-
tion, color prediction, Gaussian Mixture Model, Mixture-
of-Experts

1. INTRODUCTION

Over the last few decades, image and video coding have been
a very active field of research. The abundance of images is
ever increasing, given the popularity of social media plat-
forms and on-demand services. The proportional growth in
computing power has opened the path for exploring compu-
tationally heavier techniques aiding in compression [1]. In
this work we design a novel approach using modern machine
learning methods for color modeling in image and video cod-
ing. The main goal being to find a luma to chroma predictor
that is able to reconstruct the color components efficiently.

The human vision is much less susceptible to nearby
changes in color compared to changes in luminance [2]. In
order to treat luma and chroma differently, a transformation
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from RGB to the YCbCr color space is often used. This splits
the components in a luminance component Y and the chroma
components Cb and Cr. Based on the previous observation,
chroma components are often subsampled [3] and quantized
more coarsely [4]. Although the YCbCr-transform decorre-
lates the channels globally, in practice correlation between
the luma channel and the chroma channels still exists locally.

Research has shown that within small regions of an im-
age, linear inter-channel correlation exists between the lumi-
nance and chrominance channels [5] [6]. This lead to a pro-
posal for an integration within HEVC [7], but was rejected be-
cause of non-negligible overhead and the loss of luminance-
chrominance plane parallelism. Color modeling is also in-
herent to the field of colorization, as such our approach was
inspired by the work of Cheng et al [8].

All modern and well established compression schemes
are based on block-based transform coding and DPCM-like
prediction methods. In this work we take a completely dif-
ferent approach, which was largely motivated by the re-
cently introduced Steered Mixture-of-Experts Regression
(SMoE) methodology [9][10], combined with ideas from
image colorization [11]. We present a color modeling scheme
using Mixture-of-Experts to model a non-linear predictor
F (x, Y ) → (Cb, Cr) over the whole image, where Y is the
luminance, x is the 2-dimensional pixel location, and Cb
and Cr are the chrominance values. This approach moves
away from the usual block based techniques central to many
modern compression schemes, e.g. JPEG and JPEG2000 for
image and HEVC for video.

The underlying stochastic process of the amplitudes are
modeled as 5-D (2-D location and 3 color channels YUV)
multi-modal Gaussian Mixture Model (GMM). As such a
space-continuous internal representation of the image is ob-
tained. The GMM models the joint probability density func-
tion, which contains all the necessary and sufficient statistics
to perform the chroma regression. The decoder then performs
the chroma estimation based on this model. Every Gaussian
kernel is considered as an expert and all experts collaborate
toward the chroma reconstruction given a location and a luma
value. Given the softmaxed support of the experts, the model
yields a continuous, smoothed piecewise regression function
over the whole domain.

1288978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



Fig. 1. Gaussian mixture model with 50 Gaussians for a sub-
sampled version of size 256 × 256 of Lena (left) with a top
view showing the location in the image (right).

2. STEERED MIXTURE-OF-EXPERTS

In the Steered Mixture-of-Experts (SMoE) framework, the
underlying stochastic process of the amplitudes are mod-
eled as an N -D multi-modal Mixture Model with K modes.
The parameters are estimated using e.g. the Expectation-
Maximization (EM) algorithm [12]. The mixture describes
segments of pixels by local N -D Gaussian steering kernels
with global support. As such, each component in the Mixture-
of-Experts steers along the direction of highest correlation.
The conditional density then serves as the regression func-
tion. Consequently, we arrive at a closed form continuous
analytical model. Previous work has illustrated this idea for
image and video luma coding, where the joint probability
density function was modeled as respectively 3-D and 4-D
Gaussian Mixture Models (GMMs) [9][10].

In this paper, color images are modeled as 5-D GMMs
(2-D position and one dimension per color channel), in which
the known random 3-D variableX contains position and luma
value, while the random 2-D variable Z holds the two chroma
components. To avoid confusion, the variable name Y is re-
served for the luma values. In case of GMMs, the regression
function m(x) is given by

m(x) = E[Z|X = x] =
K∑
j=1

wj(x)mj(x) (1)

with

wj(x) =
πjN (x;µXj

, RXjXj
)∑K

l=1 πlN (x;µXl
, RXlXl

)
(2)

mj(x) = µZj
+RZjXj

R−1
XjXj

(x− µXj
) (3)

and with πj being the prior/mixing weight, µj the center, Rj

the 5 × 5 covariance matrix, and N (·) the Gaussian distribu-
tion. The subscript X denotes the first 3 dimensions, Z the
last 2 dimensions. The parameters (πj ,µj , Rj) are estimated
using the EM algorithm [12]. Its application in mixture mod-
els is well known [13]. Note that although the algorithm is

said to converge, it only converges to one of many local op-
tima [12]. As such, the algorithm is sensitive to initialization.

The resulting function (Eq. 1) has the form of a kernel
estimator. Formally said, kernel estimators smooth out the
contribution of each observed data point over a local neigh-
borhood of that data point [14]. But whereas normally the
weighting function is determined by local structure in the data
(because the kernel function takes only the local neighbor-
hood into account), the weighting terms wj(x) here are deter-
mined by the global density (Eq. 2). These terms can be seen
as window or activation functions determining the amount of
influence the component has on a given point. They are ac-
tually equal to the posterior probabilities that a certain Gaus-
sian was responsible for generating x, given that we have seen
x. The terms mj(x) (Eq. 3) are the outputs of the compo-
nents, they describe how the data behaves around the center
of the component. Note that our approach is a global semi-
parametric method with the flexibility of a non-parametric
one.

3. COLOR CODING

3.1. Modeling

We are estimating a function F (x, Y ) → (Cb, Cr) over the
whole image, where Y are the luma values, x = [x1, x2] the
positions of the pixels, and Cb and Cr are the chroma val-
ues. This readily translates to a 5-dimensional Mixture-of-
Gaussians to model the joint density of these variables, from
which we can derive the regression function.

A visual representation of the model can be found in
Fig. 1. All 5 dimensions are visualized. The input variables
(x1, x2, Y ) are on the three axes, on which we plotted their
3-D Gaussians, while the output variables (Cb, Cr) are repre-
sented as the color of the ellipsoids, determined by the YCbCr
values of their centers.

Given that the resulting model is continuous. Any reso-
lution can be sampled from this function, which means that
predictions are readily available given any scale. This allows
for easy resampling and super-resolution for the color model.
The smoothing properties of the model can also implicitly de-
noise the chrominance components, similar to [15].

3.2. Image coding

Considering the Eq. 1, 2, and 3, the parameters of the model
needed are the mixing coefficients πj , the centers µj , and
parts of the covariance matrices: RXjXj

and RZjXj
. Note

that RXjXj
is 3-D and defines the weighting/window func-

tion, whereas RZjXj
defines the linear correlation between

the luma and location with the color channels. As X is 3-D
and Z is 2-D, these matrices have respectively 9 and 6 val-
ues. Because the covariance matrix is symmetrical by nature,
only 6 of the 9 components are needed for RXjXj

. In to-
tal: 5 mean values, 12 covariances and 1 mixing coefficient
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Fig. 2. Rate-distortion curves for three reference images
Lena, Mandrill and Peppers (PSNR)

bits per pixel

0 0.5 1 1.5 2 2.5 3 3.5 4

S
S

IM

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

Lena
Cb

 (SMoE)

Lena
Cr

 (SMoE)

Lena
Cb

 (JPEG)

Lena
Cr

 (JPEG)

Fig. 3. Rate-distortion curves for Lena (SSIM)

are stored per Gaussian. These are all floating point num-
bers. The center values and mixing coefficients are quantized
to 8 bit and the covariances are quantized to 10 bit, bring-
ing the total number of bits per mixture component to 168.
No other form of coding (e.g. entropy coding) is performed
to the values in this work. More elaborate methods exist us-
ing difference coded components, eigen decompositions, and
arithmetic coding [9].

An encoder thus exists of a luma-encoding part and a
color modeling part, in which the parameters are estimated.
Consequently, the parameters are stored together with the
compressed luminance plane. A decoder would need to de-
code the luma plane first, to feed it together with the model
parameters to a regressor component, which produces the
chroma that can be recombined with the luminance values
to reconstruct the image. It should be noted that the decoder
can be highly parallel, as each chrominance value can be
computed independently.

Fig. 4. Two types of artifacts (left: original, middle: recon-
struction, right: residual). Above: bad color estimation due
too little components (underfit). Below: bad color estimation
due to motion (akiyo sequence).

Fig. 5. Image reconstruction at extremely low bitrate (0.17
bpp). Left: GMR, right: JPEG

4. EXPERIMENTAL RESULTS

4.1. Experimental setup

For our experiments, we initialized the EM algorithm using
a 2-D Sobol sequence for choosing the initial position quasi-
uniformly [16]. The covariance matrices were initialized as
diagonal matrices with a bandwidth of 0.001 for the pixel lo-
cations and (Cb, Cr) values and a bandwidth of 0.01 for the Y
values.

4.2. Image coding - Integration with JPEG

In order to evaluate the viability of our technique in image
coding, we integrated our technique into the JPEG standard.
We consider this work to be a proof-of-concept, as our model
is only coded very roughly and is not considered to be opti-
mized. As such, more highly optimized state-of-the-art is not
considered for comparison. The GMM is trained on the orig-
inal luminance values, and the reconstruction is done on the
JPEG reconstructed luminance values. Note that adding more
components to the mixture increases the quality, but also in-
creases the bitrate. Optimization between of the quantization
strength and the amount of components was done by a simple
grid search.
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Fig. 6. PSNRUV per frame for the reference video sequences
bus and coastguard using SMoE vs. copying the chroma val-
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The rate-distortion curves can be found in Fig. 2 for three
reference images of 512×512 pixels. Baboon contains mostly
very high frequency content. Lena has softer color changes,
but also contains some highly textured content as well as very
low textured content. Peppers has overall low frequency con-
tent, but contains hard differences between colors with edges
in between. At bitrates lower than 0.25 bpp, we can see im-
provements in terms of PSNR over JPEG. This proves that a
gain in compression is possible at the lowest bitrates. If we
look at the rate distortion in terms of SSIM for Lena (Fig. 3),
we can see reductions up to 50% in bpp in the ranges of 1.0
- 2.0 bpp for the Cb and Cr components. SSIM is meant to
assess quality in a more perceptual fashion, although that is
debatable [17]. SSIM favors more continuous structural prop-
erties [18], which is exactly what our technique does well.
However at the higher bpp ranges, this is also a flaw, as the
model can not capture detailed structures in parts of the im-
age.

The typical loss of detail due to model underfitting is
shown on top of Fig. 4. One can see that for Baboon, the
details around the eye are excessively blurred. A reconstruc-
tion at the lowest bitrate for Lena is shown in Fig. 5, where
it is clear that JPEG distorts the colors whereas our technique
yields a smooth and visually more accurate representation.

4.3. Activation/Windowing function

In this section we take a closer look to the activation func-
tion wj(x) for each component. This function is activated
by the position and the luminance of a certain position. As
such, our model is assumed to handle relatively small dis-
placements which allows for relatively coarse modeling.

We evaluate this assumption by taking a look at consec-
utive frames of video sequences. We assume that for fairly
static content a model estimated for a given frame will most
likely hold for consecutive frames as well. Luminance values
are locally mapped to chrominance values. When a segment
of luminance values slightly shifts away from its original po-

sition, the location will not match that in the model anymore.
The luma values however will still be close to the center of a
nearby component, which will contribute to it still getting the
correct color.

Note that in this case, the model can be built at decoder
side. As such, the color of the first frame needs to transmit-
ted on which the model is trained. Also note that we do not
incorporate any form of motion compensation. In practice,
it is possible to update the centers of the components by fol-
lowing the direction of the motion. Or better, time could be
added as a 6th dimension. As such, the components move
along the motion [10], the model should then be trained on a
set of frames.

Two test sequences were tested: (1) bus, which contains
relatively large motion with a camera following a bus through
traffic and (2) coastguard, which shows two boats crossing
each other, and contains a large sudden camera motion. Both
models were trained using 200 components on the first frame.
This model is then reused on all consecutive frames. Please
note that no motion compensation is taken into account. The
goal is to illustrate that relative small motion is captured by in-
corporating the luminance into the weighting/gating function
for each expert. As such, we compare with simply copying
over the chroma values of the first frame to the consecutive
ones.

Fig. 6 shows the average PSNR of the Cb,Cr channels of
the reconstruction (PSNRCbCr), compared with simply copy-
ing the chroma values from the first frame. For bus, although
there is much motion, the color model is locally stable for a
considerable number of frames. As such, it performs better
than simply copying the values. Secondly, for coastguard,
the PSNR is gradually dropping because of the movement of
the boats. A sudden drop appears when the camera moves up-
ward, which makes the color model inconsistent with the data.
Both examples have the inherent disadvantage compared to
simply copying the chroma values from the first frame, that
they inherently lose quality because the chroma are approxi-
mated, not copied.

We can conclude that our model is able to capture rela-
tively small motion changes. However, the model should be
retrained when it becomes inconsistent, or the centers should
move along the motion if the number of frames increases.

5. CONCLUSION

In this paper, we explored the possibility of using Steered
Mixture-of-Experts for color modeling for image and video
coding. Firstly, it was shown that compression gains are pos-
sible for low bitrates by to incorporate our technique in JPEG,
even with very crude coding of the color model. Secondly, our
experiments have shown that the model allows for some dis-
placement of the luma values. Finally, future work involves
exploring the time dimension in video, and improving the
coding of the model.
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