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ABSTRACT
We present a novel framework for precisely estimating dense depth
maps by combining 3D lidar scans with a set of uncalibrated cam-
era RGB color images for the same scene. Rough estimates for 3D
structure obtained using structure from motion (SfM) on the uncal-
ibrated images are first co-registered with the lidar scan and then
a precise alignment between the datasets is estimated by identify-
ing correspondences between the captured images and reprojected
images for individual cameras from the 3D lidar point clouds. The
precise alignment is used to update both the camera geometry pa-
rameters for the images and the individual camera radial distortion
estimates, thereby providing a 3D-to-2D transformation that accu-
rately maps the 3D lidar scan onto the 2D image planes. The 3D to
2D map is then utilized to estimate a dense depth map for each im-
age. Experimental results on two datasets that include independently
acquired high-resolution color images and 3D point cloud datasets
indicate the utility of the framework. The proposed approach offers
significant improvements on results obtained with SfM alone.

Index Terms— structure from motion, lidar, depth map, sensor
fusion

1. INTRODUCTION

Contemporary techniques for estimating structure from motion
(SfM) allow us to conveniently exploit multiple images of a scene,
captured from different viewpoints using only consumer-grade cam-
eras, to jointly estimate both the 3D structure of the scene and the
parameters of the cameras used for the captured images [1, 2]. Al-
though these techniques are powerful, they have limitations: 3D
structure is directly estimated for only a sparse set of points for
which correspondences can be reliably established between the mul-
tiple viewpoints and the accuracy of 3D locations of the points as
well as the camera parameters is limited because of the deviations
that actual consumer cameras exhibit compared with the ideal imag-
ing models used in SfM. Other than the sparse set of corresponding
points between different viewpoints, 3D structure is obtained by
interpolation, which can be problematic, particularly for untex-
tured regions in the scene. New sensing modalities, such as a lidar
and structured-light based depth sensing, provide an alternative ap-
proach for sensing 3D structure. These modalities allow for precise
estimation of relatively dense 3D structure and work well even in
untextured regions. However, data capture for these modalities is
considerably more involved than for simple point and shoot cameras
and there is either no accompanying color imagery or such imagery
is available only at low resolution.

In this paper, we propose a novel methodology for synergisti-
cally fusing 3D structure from lidar with SfM to obtain a more ac-
curate and higher resolution 3D representation than is achieved with
each modality alone. Specifically, we demonstrate our methodol-
ogy by obtaining a high resolution precise depth map for each of
the images. The proposed method has utility in applications where
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Fig. 1: Overview of the proposed methodology for fusing structure
from motion (SfM) and lidar scan. The solid and dashed lines show
the data flow and parameters flow, respectively.

a combination of high resolution geometry and texture (color) is
desired for instance in improved photorealistic rendering of urban
scenes [3, 4], augmented reality [5], self-driving vehicles [6] and
cultural heritage preservation [7, 8].

Fusing the data from the different sensors relies on the registra-
tion between 3D lidar scan and 2D photographs. Several methods
have been proposed for this problem. Traditional approaches are
based on feature matching where a set of points or lines correspon-
dences are known. Zhang and Pless [9] use a checkerboard as target
for point matching that is observed by camera and laser scanner. The
camera is pre-calibrated in their set-up and only the extrinsic param-
eters are estimated. In [3], 3D lines are extracted from the lidar
scan and matched with 2D features generated from vanishing points.
Ding et al [4] apply a two-step algorithm that first recovers a coarse
camera parameter and then matches the 2D corners from image with
the orthogonal 3D corners. Tamas and Kato [10] use shape regis-
tration that uses planar objects visible in both sensors. More recent
work [11, 12] exploits information-theoretic methods for this prob-
lem. In [11], the mutual information between reflectivity recorded
by lidar and pixel intensity in image is maximized to determine cam-
era pose. Mastin et al [12], on the other hand, formulate the regis-
tration problem as maximizing the mutual information between the
distribution of point features in the image and lidar data.

Several algorithms integrate multi-view geometry to reconstruct
a point cloud from a set of unordered images [13, 8] or video se-
quence [14]. The basic idea of these algorithms is to reconstruct a
sparse point cloud and to align with lidar scan. In [14], the prob-
lem of point cloud alignment is solved by the ICP algorithm, which
has limited ability for dealing with outliers. Liu et al [13] deter-
mine camera extrinsic parameters based on a set of 3D correspond-
ing points. However, in their methodology the images have to be
pre-calibrated in order to achieve satisfactory accuracy. Subsequent
work of [8] proposes a similar framework for 3D-to-2D registration,
requiring human interaction to align several images to the lidar scan
by manually determining the point correspondences.

Other prior works include: in [15], a joint calibration and sensor
fusion algorithm is applied by alignming the edges in depth map and
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intensity image. In [16], first a region matching method is used to
match the lidar with an image from the similar viewpoint, and the all
images are aligned together to handle the changes in viewpoint.

In this paper, we introduce a novel framework for fusing the dif-
ferent data modalities for 3D lidar scans and 2D photography to es-
timate dense depth maps. In contrast with the work in [17] where
the lidar and camera sensors are rigidly attached on a vehicle, our
approach does not require the relative position of lidar and camera
to be fixed and the sensors can conveniently be deployed indepen-
dently for data acquisition. Additionally, instead of determining a
set of cross-domain feature correspondences in 3D space and 2D
image plane, which is error-prone, we combine SfM with lidar scan
and obtain an accurate transformation by matching images in 2D re-
projection space. Another benefit of the 3D-to-2D alignment method
we use is that both intrinsic and extrinsic camera parameters can be
estimated, whereas, when 3D to 3D alignment [9, 15] the relative
change in geometry between the different sensors can only provide
extrinsic parameters, which are not precise enough for high resolu-
tion imagery. The proposed automated framework does not require
prior camera calibration and is robust to outliers.

The paper is organized as follows. Section 2 describes a sketch
of the proposed framework. We present the experimental results on
two real datasets in Section 3, and conclude the paper in Section 4.

2. FUSING SFM AND LIDAR

The proposed framework addresses the problem of estimating depth
maps from 3D lidar scans and a set of 2D images using the pipeline
depicted in Fig 1. The lidar scan and the images form the input and in
order to accomplish the fusion of these modalities, we obtain precise
estimates of both the camera intrinsic parameters and the geometric
parameters that relate different sensor coordinate systems, including
radial distortion, which is critical for high resolution imagery. To
accomplish our goal, we apply a two-stage process to automatically
recover an accurate transformation that maps 3D lidar scan onto 2D
image plane. This transformation is then utilized to estimate depth
map of the corresponding 2D image. In the first stage, a sparse point
cloud is reconstructed by incremental SfM algorithm and is aligned
with lidar scan to obtain initial camera parameters. In the second
stage, we align each input image with a corresponding synthetic im-
age that is generated from lidar scan at the same viewpoint, where
radial distortion is considered to refine the initial camera parameters.

2.1. Initial 3D-to-2D Transformation Estimation
The first stage aims to estimate coarse camera parameters with
respect to lidar scan. The input to this stage comprises a point
cloud Ml captured by lidar and a series of uncalibrated images
I = {In}Nn=1 observing the scene, where N is the number of im-
ages. Each point in the point cloud is associated with 3D coordinate
and color data, and is denoted by

Ml = {
(
Bl

i, V
l
i

)
}Kl
i=1, (1)

whereBl
i =

(
Xl

i , Y
l
i , Z

l
i

)T
is the 3D coordinate of the point i, V l

i =

(Ri, Gi, Bi)
T is the RGB color value for the point recorded by lidar,

and Kl is the number of points in the point cloud. This stage returns
initial camera parameters that map the 3D point onto each image
plane of the camera. The camera model is given by [1]

b̃i = Kn [Rn|tn] B̃i, (2)

where b̃i = (xi, yi, 1)
T denotes the homogeneous coordinate on the

2D image plane of the projected 3D point B̃i = (Xi, Yi, Zi, 1)
T ,

the extrinsic matrix, [Rn|tn], contains a rotation matrix Rn and a
translation vector tn of the camera, and Kn is the intrinsic matrix

Kn =

αn γi un

0 βn vn
0 0 1

 , (3)

where αn and βn are the focal length in the horizontal and vertical
direction of the camera, respectively, (un, vn) is the principal point,
and γi denotes for the skew parameter, which is equal to 0 for most
cameras. The camera parameters, which describes the projection of
a 3D point onto 2D image plane, is given by Pn = Kn [Rn|tn].

Our approach to recover initial camera parameter is based on the
SfM technique, which simultaneously reconstructs 3D structure and
camera positions and orientations from a set of images captured at
various viewpoints. Among several proposed SfM strategies, incre-
mental SfM [18, 2, 19] has been widely used. The basic idea is that a
set of keypoints are detected in each image and matched between all
pairs of images. Then an iterative procedure is performed to recover
camera parameters as well as 3D scene. In each iteration, only one
camera is added for optimization.

We use a similar notation to represent the sparse point cloud
computed by SfM

Ms = {
(
Bs

j , V
s
j

)
}Ks
j=1, (4)

where Bs
j =

(
Xs

j , Y
s
j , Z

s
j

)T is the coordinate of point j, and V s
j =

(Rs
j , G

s
j , B

s
j )

T is the color value for the point, andKS is the number
of points in the reconstructed point cloud. SfM also returns a set
of camera parameters Ps

n = Ks
n [Rs

n|tsn] , n = 1, 2, . . . , N , with
respect to Ms, for the reconstructed cameras.

Given that two point clouds, Ml from lidar and Ms from SfM,
are associated with two different coordinate systems, it is necessary
to first map them into a common reference by point cloud alignment.
We adopt a rigid transformation including a rotation matrix R3×3, a
translation vector t3×1, and a scaling factor s, and map the points of
Ms to Ml. In practice, the sparse-to-dense point cloud alignment is
complicated due to different number of points in two point clouds.
We adopt the coherent point drift (CPD) algorithm [20] where the
transformation is estimated within EM framework [21] that is ro-
bust to noise and accommodates different number of points as well.
For each reconstructed camera n, the new extrinsic matrix

[
Rl

n|tln
]
,

which relates the camera coordinate system and lidar coordinate sys-
tem, is computed based on the transformation

Rl
n = sR3×3R

s
n

tln = sR3×3t
s
n + t3×1.

(5)

The new camera parameters that provide initial 3D-to-2D transfor-
mation between the lidar scan Ml and the input images are Pl

n =
Ks

n

[
Rl

n|tln
]
, n = 1, 2, . . . , N .

2.2. 3D-to-2D Transformation Refinement
While SfM is a prevalent technology for recovering 3D structure
along with camera motions, the state of the art algorithm is still far
from producing satisfactory results in terms of accuracy [22, 23] for
several reasons. First, SfM applies bundle adjustment as a global re-
finement, which could only end up in a local minima. Second, the
camera model in the first stage does not take into account the radial
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distortion, which introduces noticeable error into camera parame-
ters. Therefore, the initial camera parameters Pl

n are refined in this
stage to obtain accurate transformation for estimating a dense depth
map.

Our method is motivated by the observation that if we set up a
virtual camera using the camera parameter Pl

n, we can synthesize
an image I

′
n observing the 3D scene Ml and align I

′
n with the real

image In. The registration of this image pair, together with Pl
n, is

able to offer a more accurate transformation between Ml and In.
One challenging problem we found empirically is the extraction

of visible points in Ml from a given camera viewpoint. A single
point can not be occluded by another point unless one point lies ex-
actly on the ray from the camera center to another. However, if the
image In is taken in front of a building, for example, only a sub-
set of points representing the facade is visible, as shown in Fig. 2.
Hence, We apply the “hidden” point removal operator [24] to deter-
mine whether the point Bl

i is visible from the given camera position
Cl

n = −Rl
n
−1

t, and use the visible points to synthesize the image.

(a) (b)
Fig. 2: Example of points visibility. (a) shows the point cloud and
the camera position and orientation. (b) shows the visible points
from this camera. The hidden points are shown in gray.

To determine an accurate transformation between two images
In and I

′
n, we consider the homography as well as radial distortion.

The homographyH that relates the coordinates of the corresponding
image points (without radial distortion) in two images is

sx̃
′
i = Hx̃i, (6)

where x̃i =
(
x

′
i, y

′
i , 1
)T

and x̃
′
i = (xi, yi, 1)

T denote the corre-

spondence points in In and I
′
n, respectively,H is a nonsingular 3×3

matrix, and s is an arbitrary scale factor.
Radial distortion has to be considered here because the linear

camera model in (2) does not directly hold for most cameras. In this
paper, we assume that each image is affected by the first-order radial
distortion, and use the following model to remove the distortion [1]

L (x̃d; k) =

(
xd

1 + kr2
,

yd
1 + kr2

, 1

)T

, (7)

where x̃d = (xd, yd, 1)
T is the coordinate of distorted image point,

L (xd; k) is the the distortion-free image point coordinates that
obeys the camera model in (2), k is coefficient of distortion, and r
is the radial distance r =

√
x2d + y2d. The transformation between

two corresponding points in the presence of radial distortion is

L
(
x̃

′
i; k2

)
= HL (x̃i; k1) , (8)

where k1 and k2 are the distortion coefficient in In and I
′
n, respec-

tively. We apply the generalized dual bootstrap-ICP algorithm [25]
for aligning the pair of images, because it is robust to the differences
in viewpoint and able to estimate the distortion in two images.

2.3. Depth Map Estimation
By combining the initial camera parameter Pl

n with the alignment
between two images In and I

′
n, we obtain an accurate transforma-

tion between the 3D point cloudMl and the 2D image In. The depth
information derived from lidar scan is then fused with images to es-
timate depth map. Notice that the resolution of actual image is much
higher than that of depth map. Hence, we perform a post-processing
step to enhance the low-resolution range map using a bilateral fil-
ter [26]. The process yields a depth map of higher resolution than is
feasible with the lidar modality alone.

3. EXPERIMENTAL RESULTS

The proposed framework is extensively tested on two datasets with
different characteristics. The first dataset is DTU robot image
dataset [22], which contains a point cloud and a set of calibrated
images of indoor scenes. The second dataset we used is from the
Architectural Biometrics project [27, 28], which contains a 3D point
cloud and a set of uncalibrated images of outdoor scene representing
a Canadian railway station called Meeting Creek.

We first evaluate the accuracy of our framework on the DTU
dataset. The camera calibration parameters for each image are pro-
vided which can be considered as ground truth to measure the re-
projection error. We apply the state of the art SfM algorithm Visu-
alSFM [19] to reconstruct the 3D scene from 49 images of resolu-
tion 1200 × 1600, and align it with the dense point cloud. Figure 3
shows the camera positions and orientations with respective to the
dense point cloud Pl

n and an example of synthetic image I
′
17.
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Fig. 3: Results of initial 3D-to-2D transformation estimation using
DTU dataset. (a) shows the reconstructed camera with respective
to the dense point cloud. (b) shows the synthetic image I

′
17 that

corresponds to the blue camera in (a).

After the transformation refinement in the second stage, we cal-
culate the reprojection error and compare it with the result obtained
with VisualSFM alone. Figure 4 shows the histogram of the repro-
jection error in pixel units for image 17 in the dataset. The average
value of reprojection error, in this image, is reduced from 4.13 pixels
(VisualSFM) to 1.43 pixels (proposed). We also calculate the 98th
percentile of reprojection error that can be viewed as the worst case
of 3D-to-2D transformation, which, in this image, are 9.65 pixels
from VisualSFM and 3.64 pixels from the proposed method.

Figure 5 shows average (top) and 98th percentile (bottom) repro-
jection error for each image. The magenta and blue bars indicate the
results from VisualSFM and our method, respectively. We improve
the average reprojection error over all images in the dataset by 1.75
pixels, and the 98th percentile error by 4.55 pixels.

Next, we validate the proposed method with the second dataset
Meeting Creek, which is shown is Fig. 1. The major difference be-
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Fig. 6: Sample results for dense depth map estimation. The first row shows five input RGB images captured using a digital camera, and the
second row shows the corresponding depth map generated by our method. The corresponding point cloud is shown in the example of Fig. 1.
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Fig. 4: Histogram of the reprojection error using (a) VisualSFM and
(b) our method for image 17 of the DTU dataset. Both the mean and
the 98th percentile of the reprojection error are significantly reduced
using our method.

tween this dataset and DTU dataset is that Meeting Creek contains a
wide outdoor scene including several large buildings and trees, while
the objects in DTU dataset are indoor scenes and obtained under a
controlled environment. In this experiment, 459 images with reso-
lution 3888 × 2592 are acquired using the Canon EOS XS camera.
Since we do not have any prior information regarding camera cali-
bration, we test the performance of our method by visually evaluat-
ing the quality of depth maps. Figure 7 shows an example of compar-
ison between reprojected points using VisualSFM and our method.
We can readily see the displacement of alignment using VisualSFM
in Fig. 7a. Our method, however, is able to align the edge points
of roof and chimneys sufficiently close to the corresponding image
pixels, as shown in Fig 7b. Figure 6 provides the final results for
depth map estimation. Each column shows a pair of RGB image and
the corresponding depth map. Visual evaluation indicates that our
method is able to create accurate dense depth map. It is also worth
pointing out several issues in the final depth map shown in Fig 6.
First, the window region in the third depth map does not have depth
information, which is due to the lack of data in the corresponding
area for point cloud. We also notice that, in the fourth depth map,
the tree region is visually seen not to be accurate enough. The error
can occur either because of the motion of the tree during the scan-
ning or the process of hidden point removal.

4. CONCLUSION

The framework we present in this paper provides an accurate
methodology for estimating dense depth maps. Our approach is
based on fusing structure from motion and lidar to precisely recover
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Fig. 5: Reprojection error for each image in DTU dataset. The ma-
genta bars and blue bars indicate the results from VisualSFM and
our method, respectively. Top: average error for each image; Bot-
tom: the 98 percentile of error for each image.

the transformation from 3D lidar space to 2D image plane. Ex-
perimental results on two datasets demonstrate that the framework
achieves high accuracy of transformation in terms of reprojection
error and generates dense depth maps corresponding to input RGB
images.

(a) (b)
Fig. 7: Sample results for visual comparison of reprojecting points
onto image planes between (a) VisualSFM and (b) our method. The
image shows the roof region of the building in Meeting Creek. No-
tice that, in our method, the edge points of roof and chimneys is
aligned precisely to the image.
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