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ABSTRACT

A novel Hierarchical Structured Dictionary Learning (HSDL)
algorithm is proposed in this paper. It aims to learn class-
specific dictionaries for all classes simultaneously in a hierar-
chical structure. A discriminative term based on Fisher dis-
crimination criterion is jointly considered for both the class-
specific dictionaries in the lower level and the shared dictio-
naries in the upper level to enhance the discrimination of dic-
tionaries. The experimental results evaluated on the ImageNet
database have shown the superior performance of HSDL over
the state-of-the-art dictionary learning methods.

Index Terms— Sparse coding, hierarchical, image clas-
sification.

1. INTRODUCTION

The rapidly developed sparse coding techniques have led
to promising results in image classification problems [16]
[5][1][10][11][13][14][2]. Current dictionary learning meth-
ods can be roughly categorized into two categories: unsu-
pervised dictionary and supervised dictionary learning. One
well-known unsupervised dictionary learning method, K-
SVD [6], learns the over-complete dictionary from a training
dataset of natural image patches. In supervised dictionary
learning [12][1][11][13], each dictionary atom is associated
with a single class label. Instead of learning universal dic-
tionary for all classes [12][13][15] which the optimization
itself is comparatively complicated, some supervised dictio-
nary learning methods learn multiple class-specific dictionary
and improve the discriminative capability of reconstruction
residual [1][10].

Many algorithms recently have been proposed to enhance
the discrimination of the learned dictionary by either impos-
ing class discrimination criterion or enforcing structural con-
straints on dictionary [10][11][2]. Zhou et al.[17] proposed
Joint Dictionary Learning method (JDL) that focuses on ob-
ject classes that share some common visual properties which
are difficult to categorized. JDL learns multiple category-
specific dictionaries and a common shared dictionary to better
exploit the discrimination embodied in the sparse codes.

Fig. 1. The first three classes belong to ’Dog’. The com-
mon visual properties are characterized by a shared dictio-
nary D

(1)
0 in the upper level and the class-specific patterns

are learned as dictionaries D̂(1)
1···3 for the lower classes.

However, the previous methods do not consider the prob-
lem when there are more than one shared dictionary. In Fig.
1, the lower categories share some common visual properties
and belong to Dog or Cat category in the upper level. Yang et
al.[11] propose Fisher discrimination dictionary learning that
minimizes within-in class scatter and maximizes between-
class scatter to learn the shared dictionary. Yang et al.[2]
exploit a latent vector and a weighted dictionary coherence
term in the dictiobary learning to promote the incoherence
between dictionary atoms. However, the above methods can
only deal with one shared dictionary in the upper level.

In this paper, a novel Hierarchical Structured Dictio-
nary Learning (HSDL) algorithm is proposed to learn class-
specific sub-dictionaries and multiple shared dictionaries in
hierarchical structure. HSDL discriminates both the lower
and the upper classes. Here the lower classes refer to the
sub-categories while the upper classes refer to the classes
with common visual properties and in the higher level of
the structure. In Fig. 1, D(1)

0 and D(2)
0 are dictionaries of

the upper classes. D(1)
1···3 and D(2)

1···3 are class-specific dictio-
naries of the lower classes, which capture the class-specific
visual properties. In HSDL, the discrimination term based
on within-class scatters and between-class scatters is set for
dictionary learning in each level in the hierarchical structure.
The main contributions of HSDL are two-fold. Firstly, a
novel dictionary learning method is proposed to learn class-
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specific dictionaries for all classes and shared classes in the
upper level simultaneously for the dataset with hierarchical
structure. Secondly, the discrimination term for dictionary
learning considers for both the level of upper classes (shared
dictionaries) and the level of lower classes (class-specific
dictionaries) to enhance the discrimination.

2. HIERARCHICAL STRUCTURED DICTIONARY
LEARNING

To learn several-level image categories in dictionary learning,
we propose a two-level dictionary learning algorithm. Sup-
pose that in our training data we have M upper classes and
Cm lower classes in each upper class, m = 1, · · · ,M . Let
X

(m)
i ∈ Rd×N(m)

i , i = 1, · · · , Cm, be a collection of train-
ing samples of lower class i in the upper class m. d is the
dimension of the training sample and N (m)

i is the number of
training samples of the ith lower class in the mth upper class;
then we can write D(m)

i ∈ Rd×K(m)
i = [D

(m)
0 , D̂

(m)
i ] the

corresponding dictionary of X(m)
i where D(m)

0 ∈ Rd×K(m)
0

is the dictionary of the mth upper class which is composed
of the shared dictionary of all the lower classes under the
mth upper class, and is used to describe the common visual
properties of those lower classes; here K(m) is the number
of atoms of dictionary D(m)

i and K(m)
0 is number of atoms

of dictionary D(m)
0 . D̂

(m)
i ∈ Rd×

(
K

(m)
i −K(m)

0

)
is the spe-

cific visual properties of the ith lower class in mth upper
class. Denote by A = [A

(1)
1,··· ,C1

, A
(2)
1,··· ,C2

, · · · , A(m)
1,··· ,Cm

]
the coefficient matrix of training sample X over dictionary
D where X = [X

(1)
1,...,C1

, X
(2)
1,...,C2

, ..., X
(m)
1,...,Cm

] and D =

[D
(1)
1,··· ,C1

, D
(2)
1,··· ,C2

, · · · , D(m)
1,··· ,Cm

]. We formulate the fol-
lowing HSDL model:

min
[D

(m)
0 ,D̂

(m)
i ,A

(m)
i ]

Cm M

i=1m=1

Cm∑
i=1

M∑
m=1∥∥∥X(m)

i −
[
D

(m)
0 , D̂

(m)
i

]
A

(m)
i

∥∥∥2
F
+ λ

K
(m)
i∑

j=1

∥∥∥a(m)
ij

∥∥∥
1

+f(A)

(1)

where λ is the scalar parameter which relates to the sparsity
of the coefficients; f(A) will be described in the next section.

2.1. Discriminative Coefficient term f(A)

The term f(A) is designed to make the sparse coefficient be
discriminative to the max. Based on the principle of Fisher
linear discriminative analysis[3], we minimize the within-
class scatter matrix and maximize the between-class scatter
simultaneously. We propose two within-class scatters and
two between-class scatters instead of one, one for the lower

classes and another for the upper classes. The first within-
class scatter matrix designed for the lower classes is defined
as:

SW =

Cm∑
j=1

∑
ai∈A(m)

j

(ai − µ(m)
j )(ai − µ(m)

j )T (2)

where µ(m)
j is the mean vector of A(m)

j , the sparse coeffi-

cient matrix ofX(m)
j overD(m)

j ·A(m)
j = [A

(m)
0,j , Â

(m)
j ] where

A
(m)
0,j contains the sparse codes over the shared dictionary of

the mth upper class D(m)
0 , and Â(m)

j is the matrix holding
the corresponding coefficients over the class-specific dictio-
nary D̂

(m)
j inside the mth upper class. We define the first

between-class scatter matrix for the lower classes by exclud-
ing the sparse codes over the shared dictionary, given as:

SB =

Cm∑
j=1

N
(m)
j (µ̂

(m)
j − µ̂(m))(µ̂

(m)
j − µ̂(m))T (3)

where µ̂(m)
j is the mean vector of Â(m)

j , and µ̂(m) is the mean

vector of Â(m) = [Â
(m)
1 , · · · , Â(m)

m ].
The design of within-class and between-class scatter ma-

trices (S
′

W , S
′

B) for the upper classes is the same as that for
the lower classes. The dictionary of themth upper classD(m)

0

is the shared dictionary of all the lower classes under the mth

upper class. The second within-class scatter matrix is defined
as:

S
′

W =

M∑
m=1

∑
ai∈A(m)

0

(ai − µ(m)
0 )(ai − µ(m)

0 )T (4)

where µ(m)
0 is the mean vector of A(m)

0 , the sparse coefficient
of the mth upper class. A(m)

0 = [A
(m)
0,1 , A

(m)
0,2 , · · · , A

(m)
0,Cm

].
And the second between-class scatter matrix is defined as:

S
′

B =

M∑
m=1

N
(m)
0 (µ

(m)
0 − µ)(µ(m)

0 − µ)T (5)

where µ is the mean vector of A0 = [A
(1)
0 , · · · , A(m)

0 ] and
N

(m)
0 is the number of training samples of the mth upper

class. According to the equations above, the discriminative
coefficient term is therefore defined as:

f(A) = η1 (tr(SW )− tr(SB)) + η2

(
tr(S

′

W )− tr(S
′

B)
)
(6)

where parameter η1, η2 ≥ 0 controls the trade-off between
reconstruction and discrimination.

1264



2.2. The HSDL model

Incorporating Eq. 6 into Eq. 1, we have the HSDL model
given as:

min
[D

(m)
0 ,D̂

(m)
i ,A

(m)
i ]

Cm M

i=1m=1

Cm∑
i=1

M∑
m=1∥∥∥X(m)

i −
[
D

(m)
0 , D̂

(m)
i

]
A

(m)
i

∥∥∥2
F
+ λ

K
(m)
i∑

j=1

∥∥∥a(m)
ij

∥∥∥
1


+ η1 (tr(SW )− tr(SB)) + η2

(
tr(S

′

W )− tr(S
′

B)
)

(7)

By learning discriminative coefficients, both the upper and
lower layers can be more discriminative from one another.

2.3. Optimization of HSDL

The optimization procedure of the HSDL is to go through
three sub-procedures under each upper class: 1) updating the
sparse coefficients by fixing both class-specific and shared
dictionary, 2) updating the class-specific dictionaries by fix-
ing the coefficients and the shared dictionary, 3) updating
the shared dictionary by fixing the coefficients and the class-
specific dictionaries and go through 1),2) and 3) until all the
upper classes are computed.

Considering that under the mth upper class, dictionaries

D
(m)
0 ,

{
D̂

(m)
i

}Cm

i=1
are fixed, then Eq. 7 is reduced to a sparse

coding problem. Here we update
{
A

(m)
i

}Cm

i=1
class by class.

When update A(m)
i , all Xj , j 6= i, are fixed so the objective

function is reduced to:

F
(
A

(m)
i

)
=
∥∥∥X(m)

i −
[
D

(m)
0 , D̂

(m)
i

]∥∥∥+λ ∥∥∥A(m)
i

∥∥∥+f (A(m)
i

)
(8)

where F
(
A

(m)
i

)
is the discrimination constraint derived

from f
(
A

(m)
1 , · · · , A(m)

Cm

)
, given as:

F
(
A

(m)
i

)
=

η

∥∥∥∥∥∥A(m)
i −M (m)

i

∥∥∥∥∥∥2F −
Cm∑
j=1

∥∥∥∥∥∥M̂ (m)
j − M̂ (m)

∥∥∥∥∥∥2F


+ η2

(∥∥∥∥∥A(M)
0 −M (m)

0

∥∥∥∥∥2F −
M∑
k=1

∥∥∥∥∥M (k)
0 −M

∥∥∥∥∥2F
)

(9)

where M (m)
i is the mean vector matrices by taking N

(m)
i

copies of mean vector µ(m)
i as its columns, M̂ (m)

j and M̂ (m)

are produced by N (m)
j copies of µ̂(m)

j and µ̂(m) as their col-

umn vectors, M (m)
0 consist of N (m)

0 copies of the mean vec-
tor µ(m)

0 as its columns, finally, M (k)
0 and M contains N (k)

0

copies of the mean vector µ as its column vectors, k 6= m. We
can see that except for the li penalty term, the other two terms
in Eq. 8 are differentiable. There are several li-Minimization
algorithms to solve it[4], and here we adopt TwIST (two-step
iterative shrinkage/thresholding).

Considering under themth upper class the coefficients are
fixed, there are two steps for updating dictionaries. First we

update the class-specific dictionary
{
D̂

(m)
i

}Cm

i=1
class by class

and then the shared dictionary of the mth upper class D(m)
0 .

When
{
A

(m)
i

}Cm

i=1
and D(m)

0 are fixed, the objective function
is reduced to:

Algorithm 1 Hierarchical Structured Dictionary Learning

1: Input: training data
{
X

(m)
1···Cm

}M

, the scalar parameter
λ, discrimination parameter η1, η2

2: Initialization:
3: Initialize

{
D

(m)
1···Cm

}M

m=1
using K-SVD[6]

4: Initialize
{
D

(m)
0

}M

m=1
by stacking the atoms in

D
(m)
1···Cm

whose inner products are larger than the
threshold ξ columns by columns. Form the initial{
D̂

(m)
1···Cm

}M

m=1
s.t. D

(m)
i =

[
D

(m)
0 , D̂

(m)
i

]
5: Initialize

{
A

(m)
1···Cm

}M

m=1
using CVX[7]

6: Repeat until convergence
7: for each upper class m = 1 · · ·M
8: for each lower class i = 1 · · ·Cm

9: update A(m)
i by solving Eq. 8

10: for each lower class i = 1 · · ·Cm

11: update D(m)
i by solving Eq. 10

12: for each lower class i = 1 · · ·Cm

13: update D(m)
0 by solving Eq. 11

14: Output:
{
D

(m)
1···Cm

}M

m=1
,
{
D

(m)
0

}M

m=1

min
D̂

(m)
i

∥∥∥X(m)
i −D(m)

0 A
(m)
0,i − D̂

(m)
i Â

(m)
i

∥∥∥2
F

(10)

s.t.
∥∥∥d̂(m)

j

∥∥∥2
2
≤ 1,∀j = 1, · · · ,K(m)

i

After updating
{
D̂

(m)
i

}Cm

i=1
, we update D(m)

0 . The objec-
tive function is given as:

min
D̂

(m)
0

∥∥∥X(m)
0 −D(m)

0 A
(m)
0

∥∥∥2
F

(11)

s.t.
∥∥∥d(m)

j

∥∥∥2
2
≤ 1,∀j = 1, · · · ,K(m)

0

where
A

(m)
0

4
=
[
A

(m)
0,1 , · · · , A

(m)
0,Cm

]
(12)
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Fig. 2. Classification scheme of multiple learned dictionaries.

X
(m)
0

4
=
[
X

(m)
1 − D̂(m)

1 Â
(m)
1 , · · · , X(m)

Cm
− D̂(m)

Cm
Â

(m)
Cm

]
(13)

Eq. 10 and 11 are both quadratic programming problems
which can be solved by using the Lagrange duals [5].

2.4. Classification

In [18], multiple linear SVMs were trained by taking the
sparse representation over dictionaries as features to produce
the final prediction via equal voting scheme by combining the
outputs of the classifiers. Here we modified the classification
approach proposed in [18]. In each category we have the
corresponding shared dictionary, and each dictionary which
is used to train SVM contains learned shared dictionary and
learned class-specific dictionary (D(m)

i =
[
D

(m)
0 , D̂

(m)
i

]
).

We use both shared and class-specific dictionaries to train
SVM. After training multiple linear SVMs, we also use equal
voting scheme to produce final prediction. The illustration of
the classification scheme is shown in Fig. 2.

3. EXPERIMENTAL RESULTS

We applied HSDL to the tasks of object recognition and the
experiment was evaluated on the ImageNet database. We
compare the performance of the proposed HSDL algorithm
with some previous methods, including the state-of-the-art
learning methods and those using only one shared dictionary,
as shown in Table 1. Our image classification method first ob-
tains salient features from an input image using the SIFT[16]
interest point detector. We extract 100 interest points in each
image. After that, our method clusters these descriptors into
N centroids by using the standard K-means unsupervised
learning algorithm. The extracted descriptors are used to
compute the Bag-Of-Words (BoW) histogram vector for the
image. We represent each image by its histogram obtained
by the hard assignment of each local feature to BoW clusters.
The histogram is normalized by the size of the BoW. Finally,

Table 1. Recognition accuracy(%) on ImageNet dataset
Dictionary Size of Each Category 100 1000
SVM [18] 0.389 0.490
K-SVD [6] 0.378 0.488
LC-KSVD [14] 0.317 0.274
DPL [19] 0.339 0.477
SVGDL [20] 0.378 0.484
JDDLDR [21] 0.394 0.466
FDDL [11] 0.392 0.420
HSDL 0.394 0.492

we let SVM to classify the images based on their BoW. The
dictionary sizes were set to be equal across all categories.
The scalar parameter λ is set to 0.1, both discrimination pa-
rameter η1, η2 are set to 0.1 and the similarity threshold ξ
between every two columns of lower classes dictionaries be
0.94, 0.925 respectively in the two experiments.

3.1. Evaluation on ImageNet database

We choose two groups of animals which are visually similar
as our training data. In each group we have three different cat-
egories, so there are totally six categories. In each category
we use 1300 images in the first experiment and 130 images
in the second. Sample images are shown in Figure 1. The
ratio of training data and testing data was both set to 10:3.The
experimental results are shown in Table 1. The ratio of num-
ber of atoms of D̂(m) to number of atoms of D(m)

0 is found
to be approximately 4:1 in both experiments of both groups,
and for the simplicity of experiment we randomly pick some
atoms of D̂(m) and D(m)

0 to set their ratio to be 4:1 and to
make the dictionary sizes of both groups in each experiment
to be equal. It can be seen in Table 1 that the performance
of some methods was affected by different dictionary sizes.
However, HSDL outperforms all the other methods for both
the experiments with smaller and larger dictionary sizes.

4. CONCLUSION

We proposed a novel sparse coding based Hierarchical Struc-
tured Dictionary Learning (HSDL) algorithm to exploit the
visual correlation within multiple object categories. HSDL
learns multiple class-specific dictionaries and shared dictio-
naries. A discriminative term that is based on Fisher dis-
crimination criterion is developed for both the level of class-
specific dictionaries and shared dictionaries. Our experimen-
tal results revealed that the proposed HSDL algorithm is supe-
rior to the previous dictionary learning methods for the prob-
lems of classifying visually similar objects. Our future work
is to combine the projection matrix into the inter-related dic-
tionary to learn a compact and hierarchical representation.
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