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ABSTRACT

In recent years, a large number of image retargeting meth-
ods have been proposed. Measuring their relative quality is
of significant importance, and there is still room for improve-
ment in the effectiveness of objective retargeted image quality
assessment (RIQA) metrics. In this paper, we propose a reg-
istration based RIQA metric. First, we propose to calculate
the flow map using an image registration method which in-
volves SURF point matching and halfway domain optimiza-
tion. Using the computed flow map and the source image, we
propose an LGI metric which contains three factors: 1) local
similarity which assesses the local aspect ratio change, edge
directional similarity and flow smoothness; 2) global distor-
tion which measures the appearance change of salient objects;
3) salient information loss. Comparing with other six metrics,
our LGI metric correlates the best with subjective rankings on
the RetargetMe dataset.

Index Terms— retargeted image quality assessment
(RIQA), dense correspondence, salient object segmentation,
edge direction similarity

1. INTRODUCTION

With the development of display devices, there is a growing
need for content-aware image retargeting methods in order to
adapt the image display on the screen of different aspect ra-
tios [1, 2]. The image retargeting methods can be roughly
categorized into two classes. Discrete methods, such as crop-
ping (CR), seam-carving (SC) [3], shift-map (SM) [4] and
MULTIOP [5], directly remove the pixels or patches under the
guidance of visual importance map. On the other hand, the
continuous methods, such as uniform scaling in one dimen-
sion (SCL), non-homogeneous warping (WARP) [6], stream-
ing video (SV) [7] and scale-and-stretch (SNS) [8], aim to
generate a continuous pixel-wise flow that morphs the source
image to the target size.

The retargeted image quality assessment (RIQA) is quite
different from the traditional image quality assessment tasks,
because the image to be assessed is not aligned to the refer-
ence, and the characteristic of the human visual system (HVS)
to geometric distortion is far from being fully understood. In
[1], Rubinstein et al. conducted a comprehensive study of dif-

ferent retargeted methods. Based on their dataset, they also
examined the performance of several objective retargeted im-
age quality metrics, including BDS [9], BDW [5], EH [10],
SIFTflow [11] and EMD [12]. However, most of those met-
rics are generalized distance metrics, and do not correlate
well with the subject rankings on assessing retargeted images.
Many recent RIQA works use SIFTflow for image registra-
tion, and then measure the similarity between the correspond-
ing patches. The structural similarity index (SSIM) is uti-
lized in [13] to measure the structural similarity of the local
patches, and the saliency map is used for pooling the local
similarity values. In [2], the geometric distortion is measured
based on the variation of the flow field. In [14], retargeted dis-
tortions are assessed by the change of the local aspect ratio.
However, all of these works treat the image and the flow field
separately. Also, the intrinsic geometric characteristics of the
image, such as the local edge direction and strength, are not
taken into consideration.

In this work, we use a halfway domain method for ro-
bust image registration. Then, using the flow mapping, a new
RIQA metric called LGI is proposed. The main contribu-
tions of this work include: (1) a halfway domain registration
method is proposed for robust image registration; (2) a novel
local similarity is proposed by jointly considering the image
content and the morphing flow; (3) an efficient salient object
detection method is proposed to detect the salient objects for
the global geometric distortion assessment.

2. ALGORITHM SCHEME

The whole framework of our LGI metric is illustrated in
Fig. 1. We first propose a novel registration method that es-
tablishes the dense correspondence between the source and
retargeted images on the halfway domain. The optimization
method can find the dense correspondence robustly, even
when the retargeted method introduces a large geometric dis-
tortion or content removal. After the optimization, a flow
field that for pixel correspondence with sub-pixel accuracy is
obtained.

In the second part of this work, we use the flow and the
source image to assess the geometric similarity from three
perspectives. First, local similarity value (LSV) uses the lo-
cal aspect ratio change, the edge directional change and the
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Fig. 1: The framework of the RIQA metric. The flow map that corresponds the patches of two images are first generated. Using
the flow map and the source image, the local similarity, global similarity and information loss are computed.
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Fig. 2: The point p0 is morphed through p to p1, where p is
the corresponding point on the halfway domain Ω.

smoothness of the local flow as local distortion measure, and
these local values are then pooled according to the saliency
map. Second, global similarity value (GSV) is measured by
appearance change of the objects which are segmented out
using saliency map. Third, salient information loss is consid-
ered as the perceptual content loss.

3. DENSE CORRESPONDENCE

Inspired by the work in [15], we find the dense correspon-
dence between the input images in a halfway domain. Sup-
pose the image temporally morphs from the source image I0
to the retargeted image I1 (Fig. 2). On the halfway domain
Ω, the morphing flow is defined by a 2D vector field v. The
point p on the halfway and the corresponding points p0 ∈ I0,
p1 ∈ I1 have such relationship:

p = p0 + vp and p1 = p+ vp (1)

Next, we will compute the flow on the halfway domain Ω for
pixel correspondence. One advantage of optimizing on the

halfway is that, even in the presence of simple occlusion or
point degeneration, the flow on Ω is still continuous, which
makes the regularization simple [15]. Also, both the forward
and backward flow, which are used for assessing geometric
distortion and information loss respectively, can be obtained
from single halfway optimization.

To compute the flow vector that best aligns the pixels
between images, we optimize the energy function on the
halfway domain:

E(v) =
∑
p∈Ω

E(p) (2)

where E(p) = Ecolor(p)+α1ETPS(p)+α2ESURF (p) (3)

The first term Ecolor is the chrominance distance in the
CIELAB color space. The second term is the thin-plate
spline (TPS) energy formulated as [16], which penalizes the
smoothness of the flow vector.

For most of cases, the optimization using the first two
terms can give a satisfactory result. However, for images con-
taining textures and repetitive patterns, the chance of patch
mismatch will increase. For better robustness, we introduce
SURF point matching to constrain the solution of the flow, be-
cause the feature points appears more discriminant for sparse
correspondence. In our work, we first find 100∼200 pairs
of SURF points matched by RANSAC [17]. Denote pairs of
matched SURF points in I0 and I1 as u0

i and u1
i respectively,

then the corresponding point ûi = (u0
i +u1

i ) on the halfway is
supposed to have a flow vector of vûi

= (u1
i −u0

i )/2, and this
serves as a soft constraint for the energy function in Eq. (3):

ESURF (p) = ‖vp − vûi
‖2 (4)

For the pixels p ∈ Ω that are not constrained by the SURF
pairs, we set ESURF to zero.
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To solve the optimization efficiently, we adopt a coarse-
to-fine approach. On each image scale, we employ the gra-
dient descent method. After convergence, the point p0 in I0
can find its corresponding point p on the halfway through the
iterative search [15]:

p(0) = p0 (5)

p(i+1) = p0 + vp(0) (6)

Then, the forward flow which corresponds the point p0 to p1

will be vp0 = 2vp. The backward flow can also be com-
puted similarly. Using the backward flow, the contents that
are preserved in I1 during the retargeting will be marked, thus
forming a mask map M which represents the areas of shared
content.

4. PROPOSED RETARGETED IQA METRIC

In this section, we will describe the image quality assessment
method using the source image along with the flow map gen-
erated from the halfway domain optimization.

4.1. Local Similarity

To assess the retargeted image quality, it is important to ex-
amine the local geometry similarity patch by patch between
the images. In order to increase the computational efficiency,
the source image I0 is first divided into patches with size
w0 × h0. The corresponding patches in the retargeted im-
age I1 can be found using the forward flow. Because of the
retargeting manipulation, the patch in I1 may have a different
size of w1 × h1.

4.1.1. Local Aspect Ratio (LAR) Similarity

Ideally, a patch without any distortion keeps its aspect ratio
and absolute size. The degree of the aspect ratio change influ-
ences the local similarity between images. To measure the de-
gree of local aspect ratio change, the height and width change
ratios are denoted as Rh = h1/h0 and Rw = w1/w0, and
the patch sizes in I0 and I1 are denoted by S0 = w0h0 and
S1 = w1h1 respectively. Then the local aspect ratio similarity
(LAR) for the kth patch is given by:

LARk = (
2RwRh + C

R2
w +R2

h + C
)(

2S0S1 + C

S2
0 + S2

1 + C
) (7)

where, C is a small constant. LARk ranges from (0, 1].

4.1.2. Local Edge Direction (LED) Similarity

The LAR values are calculated using the flow vector only.
However, from Fig. 3 we find that, patches may also have
different levels of geometric distortion: for the oblique edge,
the aspect ratio change influences its edge direction greatly;
on the other hand, the edge in the vertical direction is not

Θ1Θ0

Θ1 = arctan(Θ0h1/w1) Patch in I0 Patch in I1

w0

h0 h1

w1

Fig. 3: The aspect ratio change only induces the directional
change for the oblique blue edge.

affected. This enlightens us to design a metric by jointly
considering the flow and the image edges. The edge of the
source image is first located using the structured edge detec-
tion method from [18]. For the kth patch, its principal edge
direction Θ0 is the weighted average of edge directions θi ac-
cording to the edge strength ei in the patch:

Θ0 =
∑
i

θiei, Θ0 ∈ [−pi/2, pi/2) (8)

After the retargeting, the patch is morphed to have an aspect
ratio of w1/h1, as shown in Fig 3. The principal edge direc-
tion will change to be:

Θ1 = arctan(
tan(Θ0)h1

w1
), Θ1 ∈ [−pi/2, pi/2) (9)

Then, the local edge direction (LED) similarity between Θ0

and Θ1 is defined as:

LEDk = ek1(Θ0−Θ1)2·E (10)

Here E =
∑
i ei/(w0h0) is the average edge strength, which

is used to attenuate the drop of LEDk for the patches with
small edge strength. For instance, when the edge strength is
weak and E = 0, the edge direction change should not affect
the visual quality, therefore the LEDk is 1.

4.1.3. Local Flow Smoothness (LFS)

In our work, we also propose to use TPS energy in Eq.(3) to
evaluate the local flow smoothness (LFS):

LFSk = e−k2ETPS (11)

We use k2 for normalization relative to other metrics.

4.1.4. Saliency Pooling

Finally, the perceptual local similarity value (LSV) is com-
puted by combining the the above three terms:

LSV =

∑
k(LARk · LEDk · LFSk)LCMk · Sk ·Mk∑

k Sk ·Mk

(12)
where, Sk is the patch saliency calculated by the method
in [19];Mk is the mask map, representing the preserved patch
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area in the retargeted image. In Eq. (12), LCM is the local
confidence map (LCM = [2µ0µ1 + C]/[µ2

0 + µ2
1 + C], µ0

and µ1 are the mean intensity of the corresponding patches),
and represents the confidence of correct patch matching. If
the registration is not accurate, the LCM for that patch will
be close to 0 and the local similarity of that patch does not
affect the LSV.

4.2. Global Similarity

In order to assess the geometric distortion for retargeted im-
ages, the assessment at the object level is also important,
as it relates to the more semantic human perception of im-
ages. In order to calculate the global geometric similarity,
we first segment the image with the statistical region merging
method [20] (Fig. 1). We compute the saliency map using
the DRFI model [21]. Then, connected homogeneous regions
that have saliency values larger than a threshold are further
merged. Up to three largest regions are finally chosen. Fig. 1
shows the result of salient object detection.

Suppose m salient objects are detected. The nth salient
object in the source image has the size of S(0)

n = H
(0)
n W

(0)
n .

Using the forward flow, the object is morphed to have a size of
S

(1)
n = H

(1)
n W

(1)
n . Denote R(h)

n = H
(1)
n /H

(0)
n and R(w)

n =

W
(1)
n /W

(0)
n , then the similarity value for the salient object is

defined as:

GSn =
2R

(w)
n R

(h)
n + C

(R
(w)
n )2 + (R

(h)
n )2 + C

· 2S
(0)
n S

(1)
n + C

(S
(0)
n )2 + (S

(1)
n )2 + C

(13)

and the global similarity value (GSV) will be the weighted
sum according to the absolute size:

GSV =

∑
nGSn · S

(0)
n∑

n S
(0)
n

(14)

4.3. Information Loss (IL)

An ideal image retargeting method should achieve an optimal
balance between the information loss and geometric distor-
tion. In order to measure the information loss, we use the
saliency information loss ratio:

ILR = 1−
∑
kMk · Sk∑

k Sk
(15)

where Mk is the mask map representing the content preserva-
tion and Sk is the saliency map. Then, a logistic function is
employed to map this ratio to the perceptual information loss
(IL):

IL =
1

1 + e−γ(ILR−β)
(16)

mean KRCC std KRCC p-value

BDS 0.083 0.268 0.017

BDW 0.046 0.181 0.869

SIFTflow 0.145 0.262 0.031

EMD 0.251 0.272 1e-5

IR-SSIM 0.363 0.271 1e-3

PGD+SLR 0.415 0.183 9e-14

LGI w/o LSV 0.234 0.301 2.8e-05

LGI w/o GSV 0.349 0.262 4.0e-11

LGI w/o IL 0.382 0.287 6.5e-10

LGI 0.425 0.268 2.6e-09

Table 1: Performance of different metrics on the RetargetMe

4.4. Overall quality

Finally, the retargeted image quality is characterized by the
overall similarity score, LGI, which is the product of LSV,
GSV and IL:

LGI = LSV ·GSV · IL (17)

4.5. Experimental Results

In order to validate the effectiveness of our metric, we test us-
ing the RetargetMe dataset [1]. Using a smaller set of images,
the parameters of our metric are determined as: k1 = 100,
k2 = 1200, γ = 10 and β = 0.65. The proposed metric
LGI is compared with BDS [9], BDW [5], SIFTflow [11],
EMD[12], IR-SSIM [13] and PGD+SLR [2]. The correlation
between the objective and subjective scores for each image is
measured by the Kendall Rank Correlation Coefficient:

KRCC =
nc − nd

0.5n(n− 1)
(18)

where n is the length of rankings (n = 8), nc and nd are
the number of concordant and discordant pairs over all pairs,
respectively.

Table 1 shows that, our LGI metric ranks the best accord-
ing to average KRCC. We also analyze the influence of LSV,
GSV and IF factors. From Table 1, we can see that these three
factors all benefit to the ranking performance. Moreover, the
performance of the metric without LSV or GSV deteriorates
badly, which correlates the fact that the perception of geomet-
ric distortions has more sensitivity than the information loss.

5. CONCLUSION

In this paper, we first propose a halfway domain optimiza-
tion method for registration with the constraint of SURF pairs,
which can robustly find the correspondence under content re-
moval. Then, we propose a LGI metric which measures the
local, global similarity, and salient information loss due to im-
age retargetting. A novel edge directional change measure is
introduced for local similarity assessment. Experiments show
that our metric outperforms the other six methods on the Re-
targetMe dataset.
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