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ABSTRACT

The capability to automatically evaluate the quality of long
wave infrared (LWIR) and visible light images has the poten-
tial to play an important role in determining and controlling
the quality of a resulting fused LWIR-visible image. Exten-
sive work has been conducted on studying the statistics of
natural LWIR and visible light images. Nonetheless, there
has been little work done on analyzing the statistics of fused
images and associated distortions. In this paper, we study the
natural scene statistics (NSS) of fused images and how they
are affected by several common types of distortions, includ-
ing blur, white noise, JPEG compression, and non-uniformity
(NU). Based on the results of a separate subjective study on
the quality of pristine and degraded fused images, we propose
an opinion-aware (OA) fused image quality analyzer, whose
relative predictions with respect to other state-of-the-art met-
rics correlate better with human perceptual evaluations.

Index Terms— NSS, LWIR, multi-resolution image fu-
sion, fusion performance, image quality

1. INTRODUCTION

In recent years, increasing levels of uncertain global security,
along with the availability of cheap, intelligent digital cam-
eras is encouraging interest in the development of video sys-
tems capable of detecting anomalies or events that may af-
fect the economics and safety of human activities [1]. Pop-
ular outdoor video surveillance systems that rely on electro-
optical sensors are often prone to failures due to ambient il-
lumination changes and weather conditions [2, 3]. One way
of improving performance is to use alternate modes of sens-
ing, such as infrared sensing. Decreasing costs and increasing
miniaturization has made infrared sensing an interesting ele-
ment in surveillance system design [4, 5]. Two main benefits
of the joint use of thermal and visible sensors are: the com-
plementary nature of the two modalities and the information
redundancy captured by the sensors, which increases the reli-

ability and robustness of a surveillance system. These advan-
tages have motivated the computer vision community to study
and investigate algorithms for fusing infrared and visible light
videos for surveillance applications [5].

Due to a growing interest in LWIR and visible light im-
age fusion, considerable efforts have been made to develop
objective quality measures of fused images. The performance
of different image fusion algorithms have been evaluated by
image fusion quality metrics that are based on information
theory [6], space- and frequency based image features [7],
image structural similarity [8], and models of human percep-
tion [9,10]. Chen and Blum [10] investigated the performance
of fusion metrics based on human vision system models as-
suming the presence of several levels of additive white Gaus-
sian noise (AWGN). Liu et al [11] analyzed the impact of
AWGN and blur on fused images. They found that the quality
of fused images degrades with decreases in the quality of the
images being fused. When the AWGN level was severe, the
fused images were of almost the same quality, regardless of
the fusion scheme used. These studies did not analyze impor-
tant real distortions occuring in LWIR sensors, such as non
uniformity (NU) and the ”Halo Effect.” Although extensive
work has been conducted on studying the NSS of visible light
images and their relationship to picture quality [12–15] and
some studies have been done on the statistics of LWIR im-
ages [16, 17], very little work has been done on analyzing the
statistics of fused LWIR-visible light images, and how those
statistics might be affected by the presence of any of multiple
possible impairments.

This study analyzes how image distortions such as AWGN,
blur, JPEG compression, and non-uniformity noise in LWIR
and visible light images affect the statistics (NSS) of fused
LWIR-visible light images. We deploy previous bandpass im-
age statistical models proposed in [16, 18] as a starting point,
and create an ’opinion-aware’ (OA) no-reference image qual-
ity prediction model using them. A deep comparison of
the results obtained by the proposed OA model with those of
state-of-the-art algorithms shows that our new model achieves
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Fig. 1. Example of fused images after the following distor-
tions were applied to the constituent visible light and LWIR
images. (a) AWGN. (b) NU. (c) Blur. (d) JPEG compression.
Images obtained from [17].

highly competitive results.

1.1. Distortion Models

Several studies have characterized and modeled noise in the
LWIR spectrum. Images obtained from focal plane arrays
(FPA) can present NU fixed pattern noise [19], which pro-
duces a grid-like pattern. In [20] Pezoa and Medina describe
an additive model of this type of noise in LWIR images. This
spectral model is:
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where Ĩ is the Fourier Transform of the non-uniformity noise.
The parameters u0 and v0 represent the spectral location (hor-
izontal and vertical noise center frequencies),Bu =Bv = 5.2
are the directional amplitudes, σu = σv = 2.5 are the scales
of the respective horizontal and vertical bands, and U [a, b] is
the uniform distribution over the interval [a, b]. The distor-
tion level is controlled using the standard deviation parameter
σNU , which scales the dynamic range of the NU noise. Other
common types of distortion which could affect both LWIR
and visible light images are considered here, such as AWGN,
blur, and JPEG compression.

Three distortion levels are used throughout the study for
each distortion type, which were applied to the LWIR and
visible light images of the three databases. For AWGN and
NU the standard deviation was varied as σAWGN = σNU =
{0.0025, 0.01375, 0.025}; for blur, a Gaussian blur kernel of
size 15 × 15 pixels with σblur = {1, 2, 3} was used; and
for JPEG compression, the quality was set to 100, 90 and 80
percent using the ”imwrite” Matlab algorithm. Figure 1 de-
picts several fused images obtained when both image sources
were affected by the most severe distortion level.

This study of multimodal image fusion uses databases that
we hereafter refer to as OSU [21], TNO [22], and MORRIS
[17], which contain indoor and outdoor scenes of urban and
rural environments.

1.2. Multi-resolution Fusion Methods

In night-vision applications, one of the most commonly-used
tools is multi-resolution image fusion (MIF), which aims
to retain the main features from the source images [23].
Our study considers the following MIF algorithms: average
(AVG), gradient pyramid (GP) [24], and shift-invariant dis-
crete wavelet transform with Haar wavelet (SIDWT) [25].
The decomposition level used in each of the algorithms was
set to four, and the fusion rule in each case was the maximum
of the high-pass pair of channels and the average of the low-
pass channels. Our work deploys direct heterogeneous image
fusion schemes based multi-resolution analysis.

2. NSS OF FUSED LWIR AND VISIBLE IMAGES

2.1. Processing Model

The most successful IQA models are based on bandpass sta-
tistical image models first observed by Ruderman. Here it is
assumed that ’natural’ visible light or LWIR images are cap-
tured by an optical camera, rather than being generated by
a computer using artificial processing. Natural scene statis-
tics are closely related to models of the responses of visual
neurons [26, 27]. Ruderman found that removing the local
sample means from a natural image and normalizing by the
local sample standard deviations has a strong Gaussianizing
and decorrelating effect on the resulting statistical distribution
of the image. This operation produces the Mean-Subtracted
Contrast Normalized (MSCN) coefficients of an image, which
are computed as follows:

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + C
(3)

where I is a luminance image or image patch with i ∈
1, 2, ...M and j ∈ 1, 2, ...N , where M and N are the image
height and width, respectively. The constant C is usually set
as 1, thereby preventing division by zero or a small number.
The local mean µ and standard deviation σ are defined as:

µ(i, j) =

K∑
k=−K

L∑
l=−L

wk,lIk,l(i, j) (4)

σ(i, j) =

√√√√ K∑
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L∑
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wk,l (Ik,l(i, j)− µ(i, j))
2 (5)

where w is a 2D circularly-symmetric Gaussian weighting
function sampled out to 3 standard deviations and normalized
to unit volume.

We also model the distributions of four ’paired prod-
uct’ coefficients (pp) calculated as the products of adjoining
MSCN coefficients [18], a set of log-derivative coefficients
(pd) [28], which are intended to provide higher sensitivity to
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high-frequency noise, and the divisively normalized steerable
pyramid decomposition (sp) to describe oriented band-pass
characteristics [14,16]. By using closed form statistical mod-
els to parametrically fit these histograms it is possible to
extract distortion-sensitive features.

2.2. Feature Models

It has been established that empirical distributions of both
high-quality and distorted images that have been subjected to
bandpass processing followed by divisive normalization, can
be well modeled as following a Generalized Gaussian Dis-
tribution (GGD) [16, 18]. The standard method is to fit the
histogram of the coefficients to a GGD probability density
function:

f(x;α, σ) =
α

2βΓ(1/α)
exp

(
−
(
|x|
β

α))
(6)

where α is the shape parameter, σ the standard deviation, and
Γ is the Gamma function. The products of spatially adjacent
bandpass/normalized coefficients are well modeled as follow-
ing an Asymmetric Gaussian Distribution (AGGD):
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where
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and
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Here v is the shape, and σl and σr are the spread param-
eters of the left (negative) and right (positive) sides of the
model density. We estimate the GGD (α, σ) and the AGGD
parameters (v, σl, σr) using the moment matching technique
in [29] as in [16]. For each coefficient product image, a mean
parameter is also computed:

η = (βr − βl)
Γ(2/v)

Γ(1/v)
(10)

We obtain 46 features, which are later computed over
three scales: the initial image scale, and the following two
by reducing the resolution by a factor of two, yielding a total
of 138. As a way of visualizing the features and the way
that they cluster in response to the presence of distortion,
we projected an exemplar set onto a two-dimensional space
using Principal Component Analysis (PCA). Figure 2 depicts
the two-dimensional PC space of features extracted from all
of the fused images contained in the databases, and for each
one of the considered fusion algorithms.
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Fig. 2. A total of 138 features per image are projected in a
2D space using PCA with a cumulative variance of 0.9973.
Distorted images tend to cluster away from pristine images.

3. QUALITY ASSESSMENT OF FUSED LWIR AND
VISIBLE IMAGES

3.1. Subjective Study

We separately conducted a subjective study, which we use
here to also create a trained opinion aware IQA model, and
also to be able to assess how well it correlates with subjec-
tive judgments. We conducted the study on 27 volunteers.
Each subject evaluated 150 single stimulus images over each
of five testing sessions, yielding a total of 750 judged images
apiece. The images were generated after the degradation and
fusion of 25 pairs of pristine LWIR and visible gray-level im-
ages from the TNO and MORRIS databases. The distortions
used were AWGN, NU, and blur, using the same degradation
parameters described in subsection 1.1; and the fusion algo-
rithms applied were average, gradient pyramid, and SIDWT.
The test procedure was conducted following the recommen-
dations in [30]. Each testing session was conducted under
the same conditions and using the same equipment. The ob-
tained subjective scores where converted to difference scores
(between the pristine and distorted), later to Z-scores [16, 30]
and finally to Difference Mean Opinion Scores (DMOS) for
each distorted image.

3.2. Opinion Aware Fused Image Quality Analyzer

Our opinion aware (but otherwise blind) model was created
by training on the aforementioned human subjective quality
judgments of the images. To do this we employed a Support
Vector Regression (SVR) algorithm to fit the NSS features to
the DMOS, thereby obtaining a trained opinion aware quality
model QSVM . This method has been previously applied to
IQA using NSS-based features [16, 18].

To verify the performance of our model, we compared the
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Fig. 3. Scatter plot of QSVM prediction scores versus the
DMOS.

subjective scores obtained in the previous section to the fu-
sion quality model predictions shown in Table 1, which were
previously studied by Liu et al in [11]. Since QSVM requires
a training procedure to calibrate, we divided the data from the
subjective study into two random subsets, where 80% of the
fused images and associated DMOS were used for training
and 20% for testing, taking care not to overlap the train and
test content. In order to account for a possible non linear re-
lationship between predicted and actual scores, the algorithm
scores were passed through a logistic function.

Table 1. Description of the fusion performance models stud-
ied in [11]

Model Description

QNCIE Nonlinear Correlation Information Entropy [6]
QP Image Fusion Metric-Based on Phase Congru-

ency [7]
QS Piella’s Metric [8]
QCV Chen-Varshney Metric [9]
QCB Chen-Blum Metric [10]

We repeated this process over 1000 iterations, computed
SRCC, LCC, and RMSE for all models, and tabulated their
median values in Table 2. Figure 3 depicts a scatter plot of
the predicted scores delivered by our quality model QSVM
versus DMOS for all the images evaluated in the subjective
study, along with the best-fitting logistic function. Observe
that the model QSVM has the highest correlation with human
scores, while the other models yielded lower correlation.

Table 2. Median SRCC, LCC, and RMSE between DMOS
and predicted DMOS measured over 1000 iterations

Model SRCC LCC RMSE

QNCIE 0.194 0.270 9.713
QP 0.066 0.209 9.854
QS 0.267 0.303 9.614
QCV 0.042 0.050 10.067
QCB 0.070 0.079 10.048

QSVM 0.932 0.961 2.813

4. CONCLUSION

We found that fused LWIR-visible images created with multi-
resolution fusion algorithms such as Average, Gradient Pyra-
mid, and Shift Invariant Discrete Wavelet Transform, possess
statistical regularities when band-pass filtered and divisively
normalized, and that these regularities can be modeled and
used to characterize distortions and to predict fused image
quality. NSS play an important role when analyzing distor-
tions present in fused of LWIR and visible light images, as
they have previously proved useful in modeling degradations
of the visible and infrared pictures. We found that NSS are
also potent descriptors of the quality of fused images affected
by AWGN and NU. Therefore, we proposed an OA fused im-
age quality analyzer that outperforms current fusion quality
indexes, correlating better with human subjective evaluations.

5. REFERENCES

[1] J. Lee and A. Bovik, The Essential Guide to Video Pro-
cessing, chapter 19 Video surveillance, pp. 619–649, El-
sevier, 2009.

[2] A. Benkhalil, S. Ipson, and W. Booth, “A real-time
video surveillance system using a field programmable
gate array,” Int. J. Imaging Sys.Technol., vol. 11, pp.
130–137, 2000.

[3] G.L. Foresti, “A real-time system for video surveillance
of unattended outdoor environments,” IEEE Trans. Circ.
Sys. Video Technol, vol. 8, pp. 697–704, 1998.

[4] Marie Freebody, “Consumers and cost are driving in-
frared imagers into new markets,” Photonics Spectra,
vol. 49, no. 4, pp. 40–44, april 2015.
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