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ABSTRACT

Person re-identification is a critical yet challenging task in
video surveillance which intends to match people over non-
overlapping cameras. Most metric learning algorithms for
person re-identification use symmetric matrix to project fea-
ture vectors into the same subspace to compute the similarity
while ignoring the discrepancy between views. To solve this
problem, we proposed an asymmetric cross-view matching
algorithm with dictionary learning to alleviate the variations
in human appearance across different views. Not only the
views’ dictionaries but also the persons’ dictionary codes are
constrained. Moreover, the ‘between-class’ and the ‘within-
class’ distance are taken into consideration which makes the
forming dictionary codes more robust and discriminative than
the original feature vectors. The effectiveness of our approach
is validated on the VIPeR and CUHK01 datasets. Experimen-
tal results show the proposed algorithm achieves compelling
performance and asymmetric model plays an important role
in the proposed approach.

Index Terms— Person re-identification, cross-view match-
ing, dictionary learning

1. INTRODUCTION

Nowadays, public occasions such as shopping malls, airports,
railway stations deploy a number of surveillance cameras
to meet the growing requirements of security. Person re-
identification is a fundamental task in video surveillance
which aims to match people across surveillance cameras. In
order to get a wide field of view, these cameras put in high
position and camera views are not overlapping. Normally,
person-reidentificaiton methods use appearance features to
re-identify people across non-overlapping views from the
captured videos. However, persons’ appearance features
differ in non-overlapping views due to great changes of illu-
mination, pose or viewpoint and occlusion. These compli-
cated environmental changes increase the difficulty of person
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re-identification.
Person re-identification has been paid more and more at-

tention in the past five years . Many researches [1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12] have been done to solve this challenging
task. Feature representation [1, 2, 5, 9] and metric learning
[4, 6, 7, 8, 9, 11, 12] are two fundamental problems in per-
son re-identification. Approaches mainly focus on developing
robust features against large changes across non-overlapping
views or finding a distance metric learning algorithm which
makes the same person’s appearance feature vectors closer
than different persons’ vectors in the learned subspace.

For feature representation methods, Farenzena et al. [1]
employed the weighted color histograms, Maximally Stable
Color Regions (MSRC), Recurrent High-Structured Patches
(RHSP) to capture image properties. Yang et al. [5] combined
salient color names with color histograms to represent color
distribution in appearance feature extraction. Local Maximal
Occurrence(LOMO) [9] analyzed the horizontal occurrence
of local features and maximized the occurence to make a sta-
ble representation against viewpoint changes.

However, it is extremely difficult to design an approach
to extract stable features when undergoing large environ-
mental changes. To solve this issue, an approriate distance
metric or similarity function needs to be learned, making
the distance between features of the same pedestrian smaller
than different ones. Zheng et al. [6] proposed Probabilistic
Relative Distance Comparison (PRDC) metric learning al-
gorithm to maximize the probability of a pair of true match
having a smaller distance than that of a wrong match pair.
KISSME [4] learned a distance metric from equivalence con-
straints based on a statistical inference perspective without
iteration. Pedagaid et al. [7] employed Local Fisher Discrim-
inant Analysis to maximize the ‘between-class’ scatter while
minimizing the ‘within-class’ scatter. Cross-view Quadratic
Discriminant Analysis(XQDA) was proposed in [9] to learn
a discriminant low dimensional subspace. Normally, metric
learning algorithms project the original feature vector xi into
the same learned subspace by matrix L. Then the learned
feature vector is yi = Ltxi, where superscript t represents
the transpose of a matrix. Two samples yi, yj are evalu-
ated the similarity by using Mahalanobis distance metric:
d(yi, yj) =

√
(xi − xj)tM(xi − xj) = ∥Lt(xi − xj)∥2 =
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∥Ltxi − Ltxj∥2, where M = LtL. This symmetric projec-
tion is applied to all camera views, ignoring the discrepancy
between views.

In this work, we propose an asymmetric cross-view
matching algorithm with dictionary learning to address the
drawback of the symmteric models, i.e. we use a mapping
matrix T to compensate the discrepancy between views and
project dictionary codes into the same subspace to calculate
the cosine similarity function. Besides, we also balance the
impact of negative samples on the learned model and take the
‘between-class’ and the ‘within-class’ distance into account.
Extensive experiments on the VIPeR and CUHK01 datasets
show that our approach achieves state-of-the-art performance.

The main contribution of this work are summarized as fol-
lows. (1) We use dictionary learning along with asymmetric
mapping matrix to compensate the discrepancy between cam-
era views. (2) The dictionaries and dictionary codes are con-
strained which makes the forming codes more robust and dis-
criminative than the original features. (3) Feature extraction
procedure is improved to better overcome viewpoint varia-
tion.

2. PROBLEM FORMULATION AND NOTATIONS

This work mainly focuses on dictionary learning algorithm
for person re-identification. After extracting appearance fea-
tures from pedestrians’ images, feature vectors are combined
into feature matrices. Given probe set and gallery set of
pedestrians’ feature matrix Y1 and Y2, our goal is that for
every coloum feature vector y1i ∈ Y1, i = 1, 2, · · · , n,
the algorithm needs to find the same pedestrian y2j ∈ Y2,
j = 1, 2, · · · ,m, where n and m are the number of pedestri-
ans in probe set and gallery set respectively.

The proposed algorithm has 5 categories of matrix: fea-
ture matrix, dicitonary matrix, code matrix, projective matrix
and mapping matrix. X1 and X2 are the feature matrices for
view1 and view2 when training. B1, B2 are the dictionar-
ies of view1, view2 respectively. A1, A2 are the codes under
dictionaries B1, B2. T is the asymmetric mapping matrix to
map A2 into the subspace of A1. P1, P2 are the reconstruc-
tion projective matrices. Using the aforementioned notations,
we discuss the details of the proposed algorithm in Section 3.

3. ASYMMETRIC CROSS-VIEW DICTIONARY
LEARNING

Figure 1 shows the summary of our re-identification proce-
dure. We extract features from patches firstly (the details of
features extraction are described in Section 5), and then use
feature matrices to train the dicitonary algorithm. Finally, fea-
tures are projected into the same subspace and then the probe
images are compared with gallery images, forming similarity
ranking list. According to the ranking list, we re-identify the
probe pedestrian from gallery set.

Fig. 1. Summary of Asymmetric Cross-View Dictionary
Learning. The first two solid boxes are the training process
and the third one is the testing process. XiU and XiD, i = 1, 2
indicate the feature matrix extracted on the original images
and the downsampled images in view1 or view2. The red
border image and probe image are the same pedestrian.

The main component of our algorithm is dictionary learn-
ing. Formally, the objective function is:

min
A1,A2,B1,B2,P1,P2,T

D(A1, B1, A2, B2)

+E(A1, P1, A2, P2)

+S(A1, A2, T ) +R(B1, B2),

(1)

which contains four parts.

D(A1, B1, A2, B2) =
1

2
(∥X1 −B1A1∥2F+∥X2 −B2A2∥2F )

(2)
minimizes the dictionary coding reconstruction error. This
is the traditional component in the dictionary learning algo-
rithm. Specifically, we learn one dictionary for each view
to ensure the dictionary can capture more details of different
views.

E(A1, P1, A2, P2) =
α

2
(∥P1X1 −A1∥2F + ∥P2X2 −A2∥2F )

(3)
minimizes the projection error. This projective dictionary
learning algorithm is inspired by the projective dictionary
learning [13] and Cross-view Projective Dictionary Learning
(CPDL) [14]. Using this dictionary learning algorithm can
save large computation and optimize very easily. Besides,
we can use these projective matrices to get the probe set’s
and the gallery set’s dictionary codes easily when testing
performance.

S(A1, A2, T ) = φ

n∑
i,j=1

wij(a1i − Ta2j)
2 (4)

considers the ‘between-class’ and ‘within-class’ distance in

two views. wij =

{
1 idi = idj

− 0.01
nneg

idi ̸= idj
is the coefficient
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between a1i and Ta2j when training. This item has three
roles in this approach. Firstly, the value 0.01 is to reduce the
impact of negative samples. Secondely, this item can reduce
the intra-class variance and enlarge the inter-class variance
when optimizing the objective function. Thirdly, an asym-
metric mapping matrix is introduced into this algorithm to
compensate the discrepancy between views.

R(B1, B2) =
θ

2
∥B1 −B2∥2F + λ(∥B1∥2F + ∥B2∥2F ) (5)

regulates the dictionaries and constrains them to be similar to
alleviate the misalignments among views.

α, φ, θ, λ is the hyperparamters in the algorithm. Combin-
ing all these four items, we can get the asymmetric cross-view
dictionary learning for person re-identification. The forming
codes are more compact and discriminant than the original
feature vectors.

CPDL [14] is also a cross-view dictionary learning algo-
rithm for person re-identification. The main difference be-
tween our work and CPDL [14] is that we add a constraint on
the dictionaries’ codes which considers the ‘between-class’
and ‘within-class’ distance. We map the view2’s codes into
view1’s subspace by matrix T to compensate the discrepancy
between two views. Secondly, CPDL [14] has two stages of
dictionary learning combining image level and patch level.
Such procedure makes the model more complicated while the
performance doesn’t improve dramatically. Thirdly, feature
extraction strategies are different. Although the proposed ap-
proach uses more color and texture features, the forming fea-
ture vector’s dimension is lower than CPDL [14] due to a
larger patch area and fewer downsampling operations.

4. OPTIMIZATION

We optimize the equation over A1, A2, P1, P2, T, B1, B2 one
at a time while fixing other matrices. This one variable func-
tion is a convex optimizaiton problem and has closed solution.
We can simplify S into S(A1, A2, T ) = φtr(A1L(TA2)

t),

where Lij =

{ ∑
j

wij idi=idj

wij idi ̸= idj
is the Laplacian matrix,

tr(·) indicates the trace of the matrix. Optimization process
is described next.
Update steps for A1, A2. We fix other variables and optimize
over A1. The objective function can be simplified into:

J(A1) =
1

2
∥X1 −B1A1∥2F +

α

2
∥P1X1 −A1∥2F

+φtr(A1L(TA2)
t).

(6)

Setting δJ(A1)
δA1

= 0, we get the solution

A1 = (Bt
1B1 + αI)−1(Bt

1X1 + αP1X1 − φTA2L), (7)

where I is the identity matrix. The optimization for A2 is
similar and the solution is

A2 = (Bt
2B2 + αI)−1(Bt

2X2 + αP2X2 − φT tA1L). (8)

Update steps for P1, P2. Similar to the optimization process
for A1,A2, we can get the simplified objective function P ∗

1 =

argmin
P1

∥P1X1 −A1∥2F. The solution is

P1 = A1X1
t(Xt

1X1 + γI)−1, (9)

where γ is a regularization parameter. Accordingly, the solu-
tion for P2 is

P2 = A2X2
t(Xt

2X2 + γI)−1. (10)

Update steps for T .

T ∗ = argmin
T

tr(A1L(TA2
)t) = A1LA

t
2. (11)

Update steps for B1,B2. The objective function is

J(B1) =
1

2
∥X1 −B1A1∥2F +

θ

2
∥B1 −B2∥2F + λ ∥B1∥2F .

(12)

Setting δJ(B1)
δB1

= 0, the solution is

B1 = (X1A
t
1 + θB2)(A1A

t
1 + (θ + 2λ)I)−1. (13)

Similarly,

B2 = (X2A
t
2 + θB1)(A2A

t
2 + (θ + 2λ)I)−1. (14)

Repeating the optimization procedure, the algorithm can
converge very quickly. After training, we can get the probe
codes C1 = P1Y1 and mapping gallery codes C2 = TP2Y2

and then compute the cosine similarity between column vec-
tor c1i and c2j , forming similarity ranking list and re-identify
the probe pedestrian.

5. EXPERIMENTAL RESULTS

We evaluate our approach on the public person re-identification
VIPeR [15] and CUHK01 [16] datasets.

5.1. Experimental Settings

Feature extraction. We extract appearance features on local
patches with dense grids. The patch size is 16 × 16 and the
grid step is 8 pixels. 16-bin histogram in each color channel of
RGB, HSV, LAB, YCbCr color space is extracted and dense
SIFT features are extracted in OPPONENT color space [17].
Besides, HOG texture features are also extracted.

Then we divide the images simply into right and left
halvies. For every half of the image, we use maxpool to
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Table 1. Comparison of state-of-the-art results on the VIPeR
dataset. The cumulative matching scores (%) at rank 1,5,10,
and 20 are listed

Methods rank=1 rank=5 rank=10 rank=20

KISSME [4] 19.60 - 62.20 77.00
SDALF [1] 19.87 38.89 49.37 65.73

SalMatch [18] 30.16 - - -
LADF [8] 30.22 64.70 78.92 90.44

kLFDA [11] 32.2 65.8 79.7 90.9
CPDL [14] 33.99 64.21 77.53 88.58
IDLA [19] 34.81 - 75.63 84.49

PolyMap [20] 36.80 83.70 91.70
SCNCD [5] 37.80 68.50 81.20 90.40

XQDA(LOMO) [9] 40.00 68.13 80.51 91.08
MLAPG [12] 40.73 69.97 82.34 92.37
SSSVM [21] 42.66 - 84.27 91.93
Ours(noT ) 38.04 67.69 79.18 89.15

Ours 42.94 73.58 84.63 93.70

maximize the local occurence of pattern in the same hori-
zontal position to overcome significant viewpoint variation.
This feature extraction strategy is different from LOMO’s [9].
LOMO [9] didn’t divide image. The reason for this division is
that we find it is more robust under complicated environment
in which the right half’s pattern and left half’s may not be
symmetric. To extract more general features, we also down-
sample the original 128 × 48 (160 × 60) images to 64 × 24
(80 × 30) by 2 × 2 average pooling for VIPeR(CUHK01)
dataset, then repeat the feature extraction procedure.
Hyperparameters. In this algorithm there are four hyper-
parameters, including α, φ, θ, λ. They are all set to 1.This
algorithm is not sensitive to these hyperparameters. Com-
ponents of the dicitonary learning algorithm play an equally
important role in this approach.
Evaluation Metric. We report the rank-k matching rates as
our evaluation metric. A rank-k matching rate indicates the
percentage of the probe image with correct matches found in
the top k rank against the gallery set.

5.2. Results on VIPeR Dataset

VIPeR[15] is a challenging person re-identification dataset.
It contains of 632 pedestrians pairs in two different outdoor
views. The images captured in two cameras undergo signifi-
cant variations in illumination, pose ,viewpoint. 632 pairs of
images are randomly divided into half, one half for training
and the other half for testing. Images from view1 are used as
probe and other images from view2 as gallery. We evaluate
the performance of the algorithm by repeating training and
testing procedure 10 times and getting an average cumulative
matching scores. The experimental results show the effective-
ness of our algorithm.

From Table 1, We can see that our method gets the best

Table 2. Comparison of state-of-the-art results on the
CUHK01 dataset. The cumulative matching scores (%) at
rank 1,5,10, and 20 are listed

Methods rank=1 rank=5 rank=10 rank=20

CPDL [14] 59.47 81.26 89.72 93.10
XQDA(LOMO) [9] 63.24 - 90.04 94.16

MLAPG [12] 64.24 - 90.84 94.92
Ours 63.96 84.77 90.12 94.24

performance compared with other methods. The rank-1 ac-
curacy is higher than CPDL[14] by 8.95%, indicating that
considering the ‘between-class’ and ‘within-class’ distance is
necessary and using a more straightforward way training the
dictionary can perform better.

5.3. Results on CUHK01 Dataset

CUHK01 [16] dataset consists of 3884 pedestrian images
captured by 2 different views from 971 persons. Each person
has two images in each view. Images from view1 are used
as probe and other images from view2 as gallery. 485 image
pairs are for training while the remaining image pairs are for
testing.

The proposed method is compared to recent methods.
Experimental results are shown in Table 2. The rank-1 ac-
curacy of our algorithm is 0.28% inferior to MLAPG [12].
But the proposed method’s training time is much shorter than
MLAPG [12] due to the closed solution in each iteration.

5.4. Disscussion

We evaluate T in the dictionary learning. Asymmetric map-
ping matrix T is eliminated, so the third part of objective
function becomes S(A1, A2) = φtr(A1LA

t
2
). The same pro-

cedure is repeated on the VIPeR dataset. Experimental result
(ours(noT )) is shown in the Table 1. The performance de-
creases about 4% which means the mapping matrix can com-
pensate the dicrepancy between two views and asymmetric
model can handle more complicated environment than sym-
metric model.

6. CONCLUSIONS

In this paper, we propose an asymmetric cross-view dictio-
nary learning algorithm. This algorithm uses asymmetric
mapping matrix to compensate the discrepancy between
views. The constraints on dictionaries and codes are nec-
essary for person re-identification. The effectiveness of our
algorithm is evaluated on the public VIPeR and CUHK01
datasets. Our method demonstrates state-of-the-art perfor-
mance on two datasets which means the asymmetric model
can handle more complicated environment than the symmet-
ric models.
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