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ABSTRACT

A variety of methods have been proposed for object level
saliency detection, which is useful for many content-based
computer vision applications. Unlike most previous work that
integrate multiple low level cues to compute the saliency map,
this paper presents a novel hierarchical optimization model.
First, we compute a rough saliency map using HS method,
and then, boundary and foreground seeds are extracted from
it, which guide the computation of the background and fore-
ground saliency maps, respectively. Next, a combination of
the two saliency maps is performed. In the end, Cellular Au-
tomata is applied to optimize it and a threshold method is tak-
en to make the optimized saliency map closer to the ground
truth. Experiments on three large datasets demonstrate that
the proposed method performs favorably against the state-of-
the-art methods in terms of F-measures and MAEs.

Index Terms— saliency, hierarchical, seed extraction,
Cellular Automata

1. INTRODUCTION

Saliency detection is the process of identifying the location
of the salient object that grabs a viewers attention, which is
different from the traditional methods that predict human fix-
ation [1]. Saliency detection are universally applied in image
cropping [2], object aware image retargeting [3] [4], content-
based image retrieval, and so on. Numerous methods are pro-
posed to estimate the probability of the foreground image re-
gion, which can be divided into two kinds, either bottom-up
or top-down approaches. The bottom-up approaches usual-
ly exploit the prior knowledge, such as center prior [5][6],
boundary prior [7] [8], contrast prior [9] [10]. Center prior
assumes the salient objects are often framed near the center of
the images, but in many cases, this assumption is not true and
it leads to mistake of highlighting some background region
near the image center. Some methods take boundary prior
to enhance the computation of saliency maps, most of which
simply regard the image boundary as background. This is
fragile and may fail when the salient object touch the bound-
ary.
Considering the above-mentioned issues, we propose a hier-
archical saliency optimization model. First, the salient map of

the first layer is computed according to [11], based on which,
we can get a more reliable location of background boundary
seeds and foreground object seeds. A background-prior-based
saliency map and a foreground-prior-based saliency map are
computed, respectively. The pixel-wise combination of the
two maps is the saliency map of the second layer. Cellular
Automata [12] is utilized to enforce consistency among simi-
lar image patches and modify the saliency values of boundary
cells misclassified as background seeds through interactions
with neighbors. This is the final saliency map and the salien-
cy map of the third layer. Unlike previous methods that try to
integrate multiple cues and get the final map one time effort,
we try to optimize the saliency map layer by layer, which is
the so-called hierarchical saliency optimization model. In lay-
er 3, we also introduce a threshold method to make the final
saliency map more similar to the ground truth mask, which is
more in line with the application of the saliency maps.
The rest of the paper is organized as follows. The proposed hi-
erarchical optimization model is described in Section 2. The
experiments on three popular datasets are shown in Section 3
and the conclusion is made in Section 4.

2. HIERARCHICAL OPTIMIZATION MODEL

In this section, we detail the process of the hierarchical opti-
mization model. The model is decomposed into three layers
and each layer generates a saliency map, which is the basis of
the next layer. The flowchart is shown in Fig. 1.

2.1. Layer 1: hierarchical saliency detection

The first layer use the HS method [11] to generate the salien-
cy map (HS map), which gives a fairly accurate information
about the location of the background and foreground. These
information contribute to the following computation of two
saliency maps based on the background prior and foreground
prior, respectively.

2.2. Layer 2: information about boundary and object, the
combination map

To better utilize the structural information of an input image,
simple linear iterative clustering (SLIC) [13] algorithm is per-
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Fig. 1. Flowchart of the hierarchical saliency optimization.

formed on the input image and get the superpixels. We bi-
narize the HS map with an adaptive threshold generated by
OTSU’s method [14].

2.2.1. Boundary seeds and background-based map

The binary HS map is used to guide the selection of the
boundary superpixels. 1 is for the salient object and 0 is for
the background in the binary map. The selected boundary
superpixels should meet two requirements. First, they should
be on the border of the input image and second, the same lo-
cation of the superpixels in the binary map should not contain
any 1. In this situation, the boundary superpixels selected can
avoid containing foreground objects with a high probability
unless the HS map makes great mistakes.
When computing the boundary connectivity in [15], they re-
gard all the superpixels near the border of the input image as
boundary superpixels. We replace it with our selected bound-
ary superpixels, which is more accurate. Then we can get a
robust background-based saliency map using method in [15].

2.2.2. Object seeds and foreground-based map

We check the binary HS map and the superpixels at the same
time, and label those superpixels as foreground seeds, in
which over 90% of the corresponding positions in the binary
HS map are 1. The foreground-based map is calculated as
shown in Eq. (1).

Sfi =
∑

n 6=i,n∈FG

λ

d (ci, cn) + ∂d (Li,Ln)
(1)

Where the centroid location vector and mean CIELab color
vector of the ith superpixel are denoted by Li and ci, respec-
tively. d(ci, cn) and d(Li,Ln) are respectively the Eiuclidean
color and spatial distance between the ith superpixel and the
nth superpixel which belongs to the foreground seed set FG.
λ and ∂ are set to 1 in our experiment as in [16].

Type AUC MeanF MAE
FG map+BG map 0.894 0.659 0.171
FG map ∗BG map 0.875 0.656 0.171
BG map ∗ (1− e−6∗FG map) 0.893 0.648 0.176
BG map ∗ e(FG map) 0.883 0.658 0.170
BG map+ 0.5 ∗ FG map 0.891 0.658 0.171
e(FG map) + e(BG map) 0.886 0.657 0.171

Table 1. Comparison between 6 combination methods
(Dataset: ECSSD, best in bold)

2.2.3. The combination map

We denote the saliency map generated by Section 2.2.1 as
BG map, and the saliency map generated by Section 2.2.2 as
FG map. AUC, MeanF, MAE are short for area under curve,
mean F-measure and mean absolute error respectively (details
in Section 3). As shown in Table 1, six combination methods
are tested on ECSSD dataset with three evaluation indexes:
AUC, MeanF and MAE. In general, adding the background-
based map and the foreground-based map directly is the best
of all.

2.3. Layer 3: saliency map optimization

Cellular Automata [17] is a dynamic system with a complex
self-organizing behavior and it is widely used to simulate the
evolution process of many complicated systems. As done in
[12], we first compute the impact factor matrix: F = [fij]N∗N.

fij =

{
exp

(
−‖ci,cj‖

σ2

)
j ∈ NB(i)

0 i = j or otherwise
(2)

Where NB(i) denotes the neighbors of cell i, σ2 equals to
0.1 and controls the strength of how likely the two super-
pixels are . In order to normalize the impact matrix, D =
diag {d1, d2, ..., dN} is generated, where di =

∑
j fij , and

then F∗=D−1 · F.
Coherence matrix is proposed to balance the fact that each
cells next state is determined by itself and its neighbors, de-
noted as C∗ = diag {c∗1, c∗2, ..., c∗N} .

ci =
1

max(fij)
(3)

c∗i = a · ci −min(cj)

max(cj)−min(cj)
+ b (4)

Where a and b are set to 0.6 and 0.2, empirically. j =
1, 2, ..., N . N is the number of superpixels or number of cells.
The updating rule is shown in Eq. (5) and the initial St when
t=0 is the combination map in Section 2.2.3. After T times
iterations, ST is regarded as the optimized saliency map.

St+1 = C∗ · St + (I− C∗) · F∗ · St (5)
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input image ground truth SR07 FT09 SF12 HS13 UFO13 wCtr14 BSCA15 Our method

Fig. 2. Visual comparison of our saliency maps with 7 state-of-the-art methods.

(a) (b) (c)

Fig. 3. P-R curves. (a) on ASD; (b) on ECSSD; (c) on DUT-OMRON

Actually the optimized map has some small values which
makes it not much like the ground truth mask. In actual ap-
plication such as object segmentation or cropping, the closer
the saliency map is to the ground truth mask, the better result
it can achieve. So empirically, we set the salient values that
are larger than θ2 to 1, and set the values that are less than θ1
to 0. f(x, y) means the value in position (x, y).

f(x, y) =

 0 f(x, y) ≤ θ1
f(x, y) θ1 < f(x, y) < θ2

1 f(x, y) ≥ θ2
(6)

Where θ1 and θ2 are set to 0.05 and 0.9 empilically for the
consideration of the possible wrongly detected saliency maps
as well as the properly detected saliency maps.

3. EXPERIMENTS

We evaluate our algorithm on three public available datasets:
ASD [18], ECSSD [11], and DUT-OMROM [9]. ASD con-
tains 1000 images, where the salient objects are manually la-
beled with pixel-wise ground truth. ECSSD is short for Com-
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Table 2. Quantitative comparison of MAE and MeanF on ASD (best in bold)
Evaluation index SR07 FT09 SF12 UFO13 HS13 wCtr14 BSCA15 Our method

MeanF 0.127 0.483 0.639 0.760 0.801 0.838 0.822 0.876
MAE 0.212 0.206 0.129 0.109 0.111 0.065 0.086 0.059

Table 3. Quantitative comparison of MAE and MeanF on ECSSD (best in bold)
Evaluation index SR07 FT09 SF12 UFO13 HS13 wCtr14 BSCA15 Our method

MeanF 0.142 0.284 0.411 0.533 0.620 0.620 0.648 0.665
MAE 0.264 0.289 0.228 0.205 0.228 0.171 0.182 0.170

Table 4. Quantitative comparison of MAE and MeanF on DUT-OMRON (best in bold)
Evaluation index SR07 FT09 SF12 UFO13 HS13 wCtr14 BSCA15 Our method

MeanF 0.137 0.268 0.401 0.451 0.520 0.550 0.522 0.558
MAE 0.181 0.250 0.183 0.174 0.227 0.144 0.191 0.162

plex Scene Saliency Dataset and it is more challenging than
ASD because of its semantically meaningful but structurally
complex scenes. The last DUT-OMRON contains 5168 chal-
lenging images. The target is of various sizes and the back-
ground is quite complicated. 7 state-of-the-art methods are
selected as baselines, including SR07 [19], FT09[18], SF12
[20], UFO13[21], HS13 [11], wCtr14 [15], BSCA15 [12].
Figure 2 gives some examples to show the visual compari-
son between various methods. The saliency maps generated
by the proposed algorithms highlight the salient objects well
with fewer noisy results. The last row shows an example of
failed detection of salient object resulting from the colorful
and confusing background.
We compare our algorithms with the state-of-the-art methods
using precision and recall (P-R) curve, F-measure and mean
absolute error (MAE). The saliency map is segmented with
the threshold ranging from 0 to 255 to get the binary map,
which is used to be compared with the ground truth mask to
compute the precision and recall later. The P-R curve is com-
posed of the mean precision and recall of all the saliency maps
on different thresholds. F-measure is computed as followed:

Fβ =

(
1 + β2

)
Precision× Recall

β2 × Precision + Recall
(7)

Where β2 is set to 0.3 as done in [9]. MeanF is the aver-
age of all the F-measures. As showed in Fig. 3, when recall
achieves the largest value from 0.9 to 1, wCtr14, BSCA15 and
our method have similar results.
Although P-R curves are commonly used, they limit in that
they only concentrate on whether the object saliency is high-
er than the background saliency. But in applications, the d-
ifference between the saliency map and the ground truth is
of much importance, so mean absolute error (MAE) is intro-

duced into evaluation, which shows the average per-pixel dif-
ference between the binary ground truth and the saliency map,
normalized to [0,1].

MAE =
1

H

∑H

h=1
|S(h)−GT (h)| (8)

Table 2-4 show the MeanF and MAE of different methods on
ASD, ECSSD and DUT-OMRON, respectively. Obviously,
our method has the best MeanF on all three datasets and does
the best in MAE on ASD and ECSSD. Comparing to the BC-
SA15 [12], our method at least successfully reduces the MAE
on ASD and ECSSD by 31.39% and 6.6% respectively, which
is much better than the result declared in [22]. In general, our
method has a good performance in MAE and MeanF, which
are important evaluation indexes in applications.

4. CONCLUSION

In this paper, we propose a novel hierarchical saliency opti-
mization model. A saliency map is obtained by HS method
firstly, from which background seeds and foreground seed-
s are extracted. In this way, we can avoid taking the false
boundary pixels as background seeds in a large probability.
Background-based saliency map and foreground-based map
are computed by background and foreground seeds, respec-
tively. We integrate the two maps into the unified map in
order to take both advantages of them, and use the Cellular
Automata to optimize it. Threshold method is adopted to fur-
ther optimize the saliency map in order to make it closer to
the ground truth mask. Experiments show that our methods
do well in evaluation index of MeanF and MAE, which means
that our final saliency map is much more similar to the ground
truth mask and is much more suitable for applications like ob-
ject segmentation and cropping.
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