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ABSTRACT�

In this paper, we develop a new approach called DeepText for 
text region proposal generation and text detection in natural 
images via a fully convolutional neural network (CNN). First, 
we propose the novel inception region proposal network 
(Inception-RPN), which slides an inception network with multi-
scale windows over the top of convolutional feature maps and 
associates a set of text characteristic prior bounding boxes with 
each sliding position to generate high recall word region 
proposals. Next, we present a powerful text detection network 
that embeds ambiguous text category (ATC) information and 
multi-level region-of-interest pooling (MLRP) for text and non-
text classification and accurate localization refinement. Our 
approach achieves an F-measure of 0.83 and 0.85 on the ICDAR 
2011 and 2013 robust text detection benchmarks, outperforming 
previous state-of-the-art results. 

Index Terms text detection, convolutional neural 
network, region proposal network, natural images

1.�INTRODUCTION�
 
Text detection is a procedure that determines whether text is 
present in natural images and, if it is , to detect and locate each 
text instance. Text in images provides rich and precise high-level 
semantic information, which is important for numerous 
promising applications such as scene understanding, image and 
video retrieval, and content-based recommendation systems. 
Consequently, text detection in natural scenes has attracted 
considerable attention in the computer vision and image 
understanding community [1 12]. However, text detection in the 
wild is still a challenging and unsolved problem because of the 
following factors. First, a text image background is very 
complex and some region components such as signs, bricks, and 
grass are difficult to distinguish from text. Second, scene text can 
be diverse and usually exists in various colors, fonts, 
orientations, languages, and scales in natural images. 
Furthermore, there are highly confounding factors, such as non-
uniform illumination, strong exposure, low contrast, blurring, 
low resolution, and occlusion, which pose hard challenges for 
the text detection task.  

In the last few decades, sliding window-based and connected 
component-based methods have become mainstream approaches 
to the text detection problem. Sliding window-based methods 
[1 2] use different ratios and scales of sliding windows to search 
for the presence of possible text positions in pyramid images, 
incurring a high computational cost. Connected component 

based methods, represented by maximally stable extremal 
regions (MSERs) [3 6] and the stroke width transform (SWT) 
[7], extract character candidates and group them into word or text 
lines. Especially, previous approaches applying MSERs as the 
basic representation have achieved promising performance in the 
ICDAR 2011 and 2013 robust reading competitions [8 9]. 
However, MSERs focuses on low-level pixel operations and 
mainly accesses local component information, which leads to 
poor performance in some challenging situations, such as 
multiple connected characters, segmented stroke characters, and 
non-uniform illumination, as listed in [10]. Further, this bottom-
up approach results in sequential error accumulation in the total 
text detection pipeline, as stated in [11]. 

Rather than extracting character candidates, Jaderberg et al. 
[12] applied complementary region proposal methods called 
edge boxes (EB) [13] and aggregate channel features (ACF) [14] 
to perform word detection and acquired a high word recall with 
tens of thousands of word region proposals. They then employed 
HOG features and a random forest classifier to remove non-text 
region proposals and used a CNN for bounding box regression. 
They achieved superior text spotting and text-based image 
retrieval performance on several standard benchmarks. Actually, 
the region proposal generation step in the generic object 
detection pipeline has attracted much interest. In recent studies, 
object detection models based on region proposal algorithms to 
hypothesize class-specific or class-agnostic object locations 
have achieved state-of-the-art detection performance [15 18]. 
However, standard region proposal algorithms such as selective 
search (SS) [19], multiscale combinatorial grouping (MCG) 
[20], and EB [13] generate an extremely large number of region 
proposals. This leads to high recall, but burdens the follow-
up classification and regression models and is also relatively  

 
Figure 1: Pipeline architecture of DeepText. Our approach takes a 
natural image as input, generates hundreds of word region proposals via 
Inception-RPN (Stage 1), and then scores and refines each word 
proposal using the text detection network (Stage 2). 
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time-consuming. In order to address these issues, Ren et al. [21] 
proposed region proposal networks (RPNs), which computed 
region proposals with a deep fully CNN. They generated fewer 
region proposals, but achieved a promising recall rate under 
different overlap thresholds. Moreover, RPN and Fast R-CNN 
can be combined into a joint network and trained to share 
convolutional features. Owing to the above innovation, this 
approach achieved better object detection accuracy in less time 
than Fast R-CNN with SS [17] on PASCAL VOC 2007 and 
2012. 

In this paper, inspired by [21], our motivation is to design a 
unified approach for text characteristic region proposal 
generation and text detection in natural images. In order to avoid 
the sequential error accumulation of bottom-up character 
candidate extraction strategies, we focus on word proposal 
generation. To accomplish this, we incorporate the advantages 
of the inception module [22] and RPN [21], and propose the 
novel inception RPN (Inception-RPN). Inception-RPN slides an 
inception network with multi-scale windows over the top of 
convolutional feature maps and unites a set of text characteristic 
prior bounding boxes with each sliding position to generate word 
region proposals. The multi-scale sliding-window feature can 
retain local information as well as contextual information at the 
corresponding position, which helps to filter out non-text prior 
bounding boxes. Our Inception-RPN enables achieving a high 
recall with only hundreds of word region proposals. 
Subsequently, we present a powerful text detection network by 
introducing extra ambiguous text category (ATC) information 
and multi-level region of interest (ROI) pooling into the 
optimization process, which contribute to learn more 
discriminative information for distinguishing text from complex 
backgrounds. Our approach achieves an F-measure of 0.83 and 
0.85 on the ICDAR 2011 and 2013 robust text detection 
benchmarks, respectively, outperforming the previous state-of-
the-art results. 

 
2.�METHODOLOGY�

 
2.1.�Text� region�proposal� generation�
 
Our inception-RPN method resembles the notion of RPN 
proposed in [21], which takes a natural scene image and set of 
ground-truth bounding boxes that mark text regions as input and 
generates a manageable number of candidate word region 
proposals. To search for word region proposals, we apply an 
inception network to slide over the top of convolutional feature 
maps (Conv5_3) in the VGG16 model [23] and associate a set of 
text characteristic prior bounding boxes with each sliding 
position. The details are as follows. 

Text�characteristic�prior�bounding�box�design.�Our prior 
bounding boxes are similar to the anchor boxes defined in RPN. 
Taking text characteristics into consideration, for most word or 
text line instances, width is usually greater than height; in other 
words, their aspect ratios are usually less than one. Furthermore, 
most text regions are small in natural images. Therefore, we 
empirically design four scales (32, 48, 64, and 80) and six aspect 
ratios (0.2, 0.5, 0.8, 1.0, 1.2, and 1.5), for a total of ݇ = 24 prior 
bounding boxes at each sliding position, which is suitable for 

text properties as well as incident situations. In the training stage, 
we assign a positive label to a prior box that has an intersection 
over union (IoU) overlap greater than 0.5 with a ground-truth 
bounding box, while assigning a background label to a prior box 
with an IoU overlap less than 0.1 with any ground-truths. 

Inception­RPN.� �We design Inception-RPN, inspired by 
the idea of the inception module in GoogLeNet [22], which used 
flexible convolutional or pooling kernel filter sizes with a layer-
by-layer structure to achieve local feature extraction. This 
method has proved to be robust for large-scale image 
classification. As depicted in the top half of Fig. 1, our designed 
inception network consists of a 3 × 3  convolution, 5 × 5 
convolution, and 3 × 3  max pooling layers, which is fully 
connected to the corresponding spatial receptive fields of the 
input Conv5_3 feature maps. That is, we applied 3 × 3 
convolution, 5 × 5  convolution, and 3 × 3  max pooling to 
extract local feature representations over Conv5_3 feature maps 
at each sliding position simultaneously. In addition, 1 × 1 
convolution is employed on the top of the 3 × 3 max pooling 
layer for dimension reduction. We then concatenate each part 
feature along the channel axis and a 640-d concatenated feature 
vector is fed into two sibling output layers: a classification layer 
that predicts textness score of the region and a regression layer 
that refines the text region location for each kind of prior 
bounding box at this sliding position. An illustration of 
Inception-RPN is shown in the top part of Fig. 1. Inception-RPN 
has the following advantages: (1) the multi-scale sliding-window 
feature can retain local information as well as contextual 
information thanks to its center restricted alignment at each 
sliding position, which helps to classify text and non-text prior 
bounding boxes, (2) the coexistence of convolution and pooling 
is effective for more abstract representative feature extraction, as 
addressed in [22], and (3) experiments show that Inception-RPN 
substantially improves word recall at different IoU thresholds 
with the same number of word region proposals. 

Note that for a Conv5_3 feature map of size ݉ × ݊ , 
Inception-RPN generates ݉ × ݊ × 24 prior bounding boxes as 
candidate word region proposals, some of which are redundant 
and highly overlap with others. Therefore, after each prior 
bounding box is scored and refined, we apply non-maximum 
suppression (NMS) [26] with an IoU overlap threshold of 0.7 to 
retain the highest textness score bounding box and rapidly 
suppress the lower scoring boxes in the neighborhood. We next 
select the top-2000 candidate word region proposals for the text 
detection network in the training phase and the top-300 
proposals for testing, respectively.  

 
2.2.�Text� detection�
 

ATC� incorporation. As in many previous works (e.g., 
[21]), a positive label is assigned to a proposal that has an IoU 
overlap greater than 0.5 with a ground truth bounding box, while 
a background label is assigned to a proposal that has an IoU 
overlap in the range [0.1,0.5) with any ground-truths in the 
detection network. However, this method of proposal 
partitioning is unreasonable for text because a proposal with an 
IoU overlap in the interval [0.2,0.5)  may probably contain 
partial or extensive text information, as shown in Fig. 2. We 
note that promiscuous label information may confuse the 
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learning of the text and non-text classification network. To tackle 
this issue, we refine this proposal label partition strategy to make 
it suitable for text classification. Hence, we assign a positive text 
label to a proposal that has an IoU overlap greater than 0.5 with 
a ground truth, while assigning an 
label to a proposal that has an IoU overlap with a ground truth 
bounding box in the range [0.2,0.5). In addition, a background 
label is assigned to any proposal that has an IoU overlap of less 
than 0.2 with any ground-truths. We assume that more 
reasonable supervised information incorporation helps the 
classifier to learn more discriminative feature to distinguish text 
from complex and diverse backgrounds and filter out non-text 
region proposals. 

MLRP.� � The ROI pooling procedure performs adaptive 
max pooling and outputs a max-pooled feature with the original C channels and spatial extents ܪ × ܹ for each bounding box. 
Inspired by [33], to better utilize the multi-level convolutional 
features and enrich the receptive field information of each 
bounding box, we perform MLRP over the Conv4_3 as well as 
Conv5_3 convolutional feature maps of the VGG16 network. 
Different from [33], we find it good enough to perform ROI 
pooling over Conv4_3 and Conv5_3 and unnecessary to L2 
normalize pooled features from these two layers in our detection 
network. After MLRP, we obtain two 512 × ܪ × ܹ  pooled 
features (both ܪ and ܹ  are set to 7 in practice). Then, we apply 
channel concatenation on each pooled feature and encode the 
concatenated feature with a 512 × 1 × 1 convolutional layer. 
The 1 × 1  convolutional layer: (1) combines the multi-level 
pooled features and learns the fusion weights in the training 

fully-connected layer. An illustration of MLRP is depicted in the 
bottom half of Fig. 1. The multi-level weighted fusion feature is 
then accessed to the bounding box classification and regression 
model.   
�
2.3.�Learning�optimization�
 
Both Inception-RPN and the text detection network have two 
sibling output layers: a classification layer and a regression layer. 
We minimize a multi-task loss function, as in [15]:  

,݌)ܮ                 ,ݐ,∗݌ (∗ݐ = (∗݌,݌)௖௟௦ܮ + ,(∗ݐ,ݐ)௥௘௚ܮߣ (1)                                  
where classification loss ܮ௖௟௦ is a softmax loss and ݌ and ݌∗are 
given as the predicted and true labels, respectively. Regression 
loss ݐ ,௥௘௚ applies the smooth-L1 loss defined in [17]. Besidesܮ = ௬ݐ,௫ݐ} ௛ݐ,௪ݐ, }  and ݐ∗ = ௬ݐ,∗௫ݐ} ∗, ,∗௪ݐ ௛ݐ ∗}  stand for the 
predicted and ground-truth bounding box regression offset 
vectors, respectively, where ݐ∗ is encoded as follows: 
∗௫ݐ                  = ௫ܩ) − ௫ܲ)/ ௪ܲ, ௬ݐ ∗ = ൫ܩ௬ − ௬ܲ ൯/ ௛ܲ , 

∗௪ݐ                      = ݃݋݈ ቀீೢ௉ೢቁ ௛ݐ, ∗ = ቀீ೓௉೓݃݋݈ ቁ.                    (2) 

Here, ܲ ={ ௫ܲ, ௬ܲ , ௪ܲ , ௛ܲ }  and ܩ = { ௛ܩ,௪ܩ,௬ܩ,௫ܩ } denote the 
center coordinates (x-axis and y-axis), width, and height of 
proposal ܲ and ground-truth box ܩ, respectively. Furthermore, ߣ is a loss-balancing parameter, and we set ߣ = 3 for Inception-
RPN to bias it towards better box locations and ߣ = 1 for the text 
detection network. 

In contrast to the proposed four-step training strategy to 
combine RPN and Fast-RCNN in [21], we train our inception-
RPN and text detection network in an end-to-end manner via 
back-propagation and stochastic gradient descent (SGD). 
Furthermore, we apply the iterative bounding box regression 
scheme mentioned in [18]. The implementation details are as 
follows: (1) the shared convolutional layers are initialized by a 
pre-trained VGG16 model for imageNet classification [23]; (2) 
all the weights of the new layers are initialized with a zero mean 
and a standard deviation of 0.01 Gaussian distribution; (3) the 
base learning rate is 0.001 and is divided by 10 for each 40K 
mini-batch until convergence; (4) the momentum is 0.9 and 
weight decay is 0.0005; (5) all experiments were conducted in 
Caffe [24]. 

 
3.�EXPERIMENTS� AND�ANALYSIS�

�
3.1.�Experimental� data�
 
The ICDAR 2011 dataset includes 229 and 255 images for 
training and testing, respectively, and there are 229 training and 
233 testing images in the ICDAR 2013 dataset. Obviously, the 
number of training image is constrained to train a reasonable 
network. In order to increase the diversity and number of training 
samples, we collect an indoor database that consisted of 1,715 
natural images for text detection and recognition from the Flickr 
website, which is publicly available online1 and free for research 
usage. In addition, we manually selected 2,028 images from the 
COCO-Text benchmark [25]. Ultimately, we collected 4,072 
training images in total. 
 
3.2.�Experimental� results�on�full�text�detection�
 
We evaluate the proposed DeepText detection system on the 
ICDAR 2011 and 2013 robust text detection benchmarks 
following the standard evaluation protocol of ICDAR 2011 [32] 
and 2013 [9]. Our DeepText system achieves 0.83 and 0.85 F-
measure on the ICDAR 2011 and 2013 datasets, respectively. 
Comparisons with recent methods on the ICDAR 2011 and 2013 
benchmarks are shown in Tables 1 and 2. In the tables, we can 
see that our proposed approach outperforms previous results 
with a substantial improvement, which can be attributed to 
simultaneously taking high recall and precision into 
consideration in our system. The high performance achieved on 
both datasets highlights the robustness and effectiveness of our 
proposed approach. Further, qualitative detection results under 
diverse challenging conditions are shown in Fig. 3, which 
demonstrates that our system is capable of detecting non-
uniform illumination, multiple and small regions, as well as  low 
contrast text regions in natural images.   

Figure 2: Example word region proposals with an IoU overlap 
within the interval [0.2,0.5) 

IoU:0.30 IoU:0.29 IoU:0.49

IoU:0.38 IoU:0.49 IoU:0.21

[1]https://pan.baidu.com/s/1kVRIpd9  
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3.3.�Evaluation� of�Inception­RPN�
 
In this section, we compare Inception-RPN with the text 
characteristic prior bounding boxes (Inception-RPN-TCPB) to 
state-of-the-art region proposal algorithms SS [19], EB [13], 
standard RPN [21] and RPN with TCPB (RPN-TCPB). We 
compute the recall rate of word region proposals at different IoU 
overlap thresholds with ground-truth bounding boxes on the 
ICDAR 2013 testing set, which includes 1095 word-level 
annotated text regions. In Fig. 4, we show the results of using N= 
100, 300, and 500 word region proposals, where the N proposals 
are the top-N scoring word region proposals ranked in term of 
these methods. The plots demonstrate that our Inception-RPN-
TCPB considerably outperforms RPN-TCPB and standard RPN 
by 2%-3% and 8% 10% as well as is superior to SS and EB with 
a notable improvement when the number of word region 
proposals drops from 500 to 100. Note that our proposed 
Inception-RPN-TCPB enables achieving a high recall of nearly 
90% with only hundreds of word proposals.  
 
3.4.�Contributions�of�proposed�methods �
 
In the proposed DeepText system, we mainly employed four 
methods: Inception-RPN, TCPB, ATC and MLRP. To evaluate 
the contributions of different techniques, we conducted a series 
of experiments on the ICDAR 2013 dataset with different 
settings: standard RPN [21], Inception-RPN with TCPB, 
Inception-RPN with TCPB and ATC, Inception-RPN with 
TCPB and MLRP as well as their combination. The results are 
listed in Table 3. It shows that: (1) Inception-RPN with TCPB 
rapidly improves the recall rate as stated in section 3.3; (2) ATC 
considerably enhances the precision rate but discards the recall 
rate since it removes major false positive proposals while 
slightly increase the false negative error; (3) MLRP is effective 
to improve the precision and recall rate by incorporating multi-

level pooled feature, which is effective for learning more 
discriminative features to distinguish text from non-text; (4) the 
combination of Inception-RPN with TCPB, ATC and MLRP 
leads to a significant improvement in text detection performance. 
 

4.�CONCLUSIONS�
 
In this paper, we presented a new approach called DeepText for 
text detection in natural images with a powerful fully CNN in an 
end-to-end learning manner. DeepText consists of an Inception-
RPN with a set of text characteristic prior bounding boxes for 
high quality word proposal generation and a powerful text 
detection network embedding ATC and MLRP for proposal 
classification and accurate localization. Experimental results 
show that our approach achieves state-of-the-art F-measure 
performance on the ICDAR 2011 and 2013 robust text detection 
benchmarks, substantially outperforming previous methods. The 
example detection results show that our proposed DeepText is 
capable of detecting low contract, multiple and small, as well 
as uniform illumination text instances in natural images. 
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Figure 3: Example detection results of our DeepText system on 
the ICDAR 2011 and ICDAR 2013 benchmarks. 

Figure 4: Recall vs. IoU overlap threshold on the ICDAR 2013 
testing set. Left: 100 word region proposals. Middle: 300 word 
region proposals. Right: 500 word region proposals. 

Table 2 Comparison with state-of-the-art methods on the ICDAR 
2013 benchmark 

Method Precision Recall F-measure 
DeepText (ours) 0.87� 0.83� 0.85�
TextFlow [11] 0.85 0.76 0.80 

Zhang et al. [27] 0.88 0.80 0.80 
Neumann [29] 0.82 0.72 0.77 
FASText [30] 0.84 0.69 0.77 
Yin et al. [5] 0.88 0.66 0.76 

Text Spotter [31] 0.88 0.65 0.75 

Table 3 Contributions of different proposed methods 
Method Precision Recall F-measure 

Inception-RPN+TCPB+ 
ATC+MLRP 

0.87 0.83 0.85 

Inception-RPN+TCPB+MLRP 0.85 0.81 0.82 
Inception-RPN+TCPB+ATC 0.83 0.76 0.80 

Inception-RPN+TCPB 0.77 0.79 0.78 
RPN [21] 0.75 0.71 0.73 

Table 1 Comparison with state-of-the-art methods on the ICDAR 
2011 benchmark 

Method Precision Recall F-measure 
DeepText (ours) 0.85 0.81� 0.83�
TextFlow [11] 0.86 0.76 0.81 

Zhang et al. [27] 0.84 0.76 0.80 
MSERs-CNN [6] 0.88� 0.71 0.78 

Yin et al. [5] 0.86 0.68 0.75 
SFT-TCD [28] 0.82 0.75 0.73 
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