
New Residue Arithmetic Based Barrett Algorithms: Modular
Polynomial Computations

Hari Krishna Garg
Electrical & Computer Engineering Department

National University of Singapore
eleghk@nus.edu.sg

Hanshen Xiao
Department of Mathematics

Tsinghua University
hsxiao@mit.edu

Abstract— We derive a new computational algorithm for
Barrett technique for modular polynomial multiplication, termed
BA-P. Residue arithmetic is applied to BA-P to obtain a new
Barrett algorithm for modular polynomial multiplication (BA-
MPM). The work is focused on an algorithm that carries out
computation using modular arithmetic without conversion to
large degree polynomials. There are several parts to this work.
First, we set up a new BA-P using polynomials other than u.
Second, residue arithmetic based BA-MPM is described. A
complete mathematical framework is described including proofs
for the results. Third, we present a computational procedure for
BA-MPM. Fourth, the BA-MPM is used as a basis for algorithms
for modular polynomial exponentiation (MPE). Applications are
in areas of signal security and cryptography.

Keywords—Barrett Algorithm (BA), BA for Polynomials (BA-
P), Modular Polynomial Multiplication (MPM), Montgomery
Multiplication (MM), Residue Polynomial Systems (RPS), Chinese
Remainder Theorem for Polynomials (CRT-P), BA-P based on
MPM (BA-MPM), Modular Polynomial Exponentiation (MPE),
Base Extension for Polynomials (BEX-P).

I. INTRODUCTION

CRYPTOGRAPHY TECHNIQUES play an important role in the security
of electronic systems. Instances of such cryptography techniques
include RSA (Rivest-Shamir-Adelman), Rabin, Diffie Hellman and
El Gamal. These techniques deal with arithmetic defined in a large
size finite fields GF(p) and/or GF(pN), where p is a prime integer and
N is an integer. A large size field may be realized by setting p = 2
(binary arithmetic) and N to be a large value. Here, we also deal with
finite fields with large values of N, say 500 to 5,000. The elements in
GF(2N) are expressed as polynomials over GF(2) of degree up to N –
1. A challenge is to perform the following computations efficiently:
1. Multiplication of two elements in GF(2N):

C(u) = A(u)  B(u) (mod P(u)); deg(P(u)) = N; and
2. Modular exponentiation in GF(2N):

C(u) = A(u)E (mod P(u)); deg(P(u)) = N.
Here, P(u) is an irreducible (or primitive) polynomial in GF(2). This
eliminates use of Chinese remainder theorem for polynomials (CRT-
P) to compute C(u). Computations in 1 and 2 without mod P(u) are
simpler while mod P(u) computation is challenging. Also modular
polynomial exponentiation (MPE) is computed via repeated use of
modular polynomial multiplication (MPM). Hence, an efficient
algorithm must be used for MPM. In many situations, N is large.

Residue arithmetic is used to express a large size ring as a direct
product of a number of smaller size rings. Residue number systems
have been applied in Barrett algorithm (BA) and Montgomery
multiplication (MM), to compute modular operations in large size

integer rings. However, there is a distinct gap when it comes to
Residue Polynomial Systems (RPS) based BA and MM.

Contributions of the work are as follows. The primary objective is
to compute MPM and MPE efficiently for applications in signal
security and cryptography. We first describe a new BA for modular
polynomial multiplication (BA-P) for computing the quotient C(u)
associated with X(u) when it is divided by P(u). It is assumed that N
= deg(P(u)) is a large integer. Second, a residue arithmetic based BA-
P, termed BA-MPM, is described for modular polynomial
multiplication. Third, a computationally efficient procedure for the
new BA-MPM is described. Fourth, the new BA-MPM is used as a
basis for MPE. The results are general and valid for all fields such as
GF(pN), rational, real, and complex numbers.

There is an abundance of research on MM and BA [1]-[13].
Polynomial versions of MM and BA can be found in [14]-[22]. A
digit-serial multiplication in GF(2N) based on Barrett modular
reduction is presented in [15]. A version of digit-serial multiplication
algorithm is described in [16]. Other aspects are explored in [19].
Further details of BA and MM are available in [23]-[28].

However, there is no paper on using residue arithmetic to compute
MPM and MPE via BA. It is this particular aspect that we deal with
in this paper. The algorithm described here begins with reformulating
BA such that the new BA-P stays within residue arithmetic.

The organization of this paper is as follows. Section II provides
mathematical preliminaries on arithmetic, BA-P, RPS, CRT-P, and
base extension for polynomials (BEX-P). The new BA-P is described
in Section III. The computational steps for RPS based BA-P
algorithm are presented in Section IV. Examples are presented to
illustrate the algorithm. In Section V, we describe an algorithm for
MPE that uses the new BA-MPM. Section VI is on conclusions.

II. MATHEMATICAL PRELIMINARIES

Polynomial Arithmetic. Given X(u) and A1(u) with coefficients in a
field F, consider dividing X(u) by A1(u) to write

X(u) = Q1(u)  A1(u) + R1(u). (1)
Here, Q1(u) is quotient and R1(u) is remainder. Also, deg(R1(u)) <
deg(A1(u)) with deg(Q1(u)) = deg(X(u)) – deg(A1(u)). We write (1) as

X(u)  R1(u) mod A1(u). (2)
Dividing both sides of (1) by A1(u), we get,

 X(u) / A1(u) = Q1(u) + R1(u) / A1(u). (3)
The last term on the right when expressed as a sum of powers of u
will only contain negative powers. We also write

Q1(u) =  X(u) / A1(u) , (4)
 Y(u)  being the floor function of Y(u). Q1(u) and R1(u) are unique.
This process can be repeated between Q1(u) and A2(u). Thus

Q1(u) = Q2(u)  A2(u) + R2(u), (5)
0 ≤ deg(R2(u)) < deg(A2(u)). A generalization of (5) leads to

X(u) = Qa(u)  [(Aa(u)  A1(u)] + [Ra(u)  {Aa –1(u)  A1(u)} +
 + R2 (u)  A1 (u) + R1(u)]. (6)

1178978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

This expression is useful in computations involving RPS and BEX-P.

Barrett Algorithm for Polynomials (BA-P). Given A(u), B(u), and
P(u) in GF(p), deg(A(u)), deg(B(u)) < deg(P(u)) = N, MPM
computes:

C(u) = A(u)  B(u) mod P(u). (7)
Let X(u) = A(u)  B(u). BA-P computes quotient Q(u) such that X(u) =
Q(u)  P(u) + C(u); deg(C(u)) < N. Then C(u) is computed as C(u) =
X(u) – Q(u)  P(u). Given X(u) and P(u) BA-P expresses Q(u) as

Q(u) =  X(u) / P(u) , (8)
In the current versions of BA-P [14]-[22], (8) is computed as
Q(u) =  X(u) / ua  (u) / ua+b    X(u) / ua   (u)  / ub, (9)
where  (u)  is pre-computed as (u) =  (u)  =  ua+b / P(u) .
Scalars a and b are chosen such that Q(u) in (9) is same as Q(u) in (8)
[15, 16]. BA-P consists of steps:
0: Pre-compute (u) =  ua+b / P(u) ;
Compute:
1: X(u) = A(u)  B(u); 2: D(u) =  X(u) / ua ; 3: E(u) = D(u)  (u);
4: Q(u) =  E(u) / ub ; 5: C(u) = X(u) – Q(u)  P(u).

Residue Polynomial System (RPS) [23, 29]. A RPS defined mod
M(u) is a ring defined by n co-prime polynomials M1(u), M2(u), ...,
Mn(u) with elements in field F. The elements in RPS are polynomials
of degree up to L – 1, L = deg(M(u)), where

. (10)

A polynomial X(u) in the RPS is represented as n residues,
X(u)  X(u)  [X1(u) X2(u)  Xn(u)], (11)

where Xi(u)  X(u) (mod Mi(u)), i = 1, 2, ..., n.

Chinese remainder theorem for polynomials (CRT-P) [2, 3, 23,
29]. Given X(u), X(u), deg(X(u)) < L, is computed via CRT-P, as

. (12)

Polynomials Ti(u), deg(Ti(u)) < deg(Mi(u)), are computed a-priori via

   
    uM
uM

uM
uT i

i
i mod1








 , i = 1, 2, ..., n. CRT-P computation

of X(u) involves large degree polynomials.

Base Extension for Polynomials (BEX-P). Consider X(u), residues
of X(u) in (11). BEX-P consists in computing t additional residues of
X(u), Xj(u)  X(u) (mod Mj(u)), j = n + 1, ..., n + t, in a RPS defined

mod MI(u),    





tn

nj

j uMuM
1

I , where gcd(M(u), MI(u)) = 1. BEX-

P is intense computationally. Using (12), we compute it as [22]:

          
   uM
uM

uM
uMuXuTuX j

n

i i
jiij modmod

1 











 


,

 j = n + 1, ..., n + t. (13)

III. A NEW BARRETT ALGORITHM FOR POLYNOMIALS

A RPS based Montgomery multiplication algorithm has been
described in [22]. However, there is no such algorithm for the BA-P.
We cite [15, 16, 19] and the references therein. They have used
modulo polynomials of the type ua. Clearly, this doesn’t lend itself to
RPS. Here, we first revisit the computation of Q(u) in (8). We now

introduce two polynomials G(u) and H(u), not necessarily of the form
ua, and approximate Q(u) in (8) as

Q(u) =  X(u) / G(u)  (u) / H(u) 
   X(u) / G(u)   (u) / H(u) . (14)

(u) is pre-computed as (u) =  (u)  =  G(u)  H(u) / P(u) . Since
X(u) = A(u)  B(u), deg(A(u)), deg(B(u)) < N, deg(X(u)) ≤ 2  N – 2.

Now we derive conditions on G(u) and H(u) for approximation of
Q(u) in (14) to be equal to Q(u) in (8).  V(u)  is polynomial part of
V(u) consisting of terms with positive powers of u. Consider
dividing V(u) by S(u) to write V(u) = Q(u)  S(u) + R(u). Then we
have

 V(u) / S(u) = Q(u) + R(u) / S(u)
 =  V(u) / S(u)  + (u), deg((u)) ≤ –1. (15)

Applying (15) to (14), we get

 

 
       

   

 





































 





















uH

u
uP

uHuG
u

uG

uX

uQ



 (16)

 =  A + B ,

where A

 
   

 uH

u
uG

uX 








 , and

B

 
       

       

 uH

uuu
uP

uHuG
u

uG

uX  






 










 .

Here, deg((u)), deg((u)) ≤ –1. We wish the second term in the
above summation to have degree less than 0. To achieve that,

(A)
 
  


















uG

uX
deg ≤ deg(H(u));

(B)
   

  
















 
uP

uHuG
deg ≤ deg(H(u)).

We assume these conditions to be satisfied. Thus (16) becomes:

 

 
   

   
































 u
uH

u
uG

uX

uQ

  
   

 





























uH

u
uG

uX 
, (17)

as deg((u)) ≤ –1. We note that deg((u)) = deg(G(u)) + deg(H(u)) –
deg(P(u)). This analysis leads to the following theorem:
Theorem 1. Let A(u), B(u) and P(u) be given such that 0 ≤ deg(A(u)),
deg(B(u)) < deg(P(u)) = N. For the computation X(u) mod P(u), X(u)
= A(u)  B(u), if G(u) and H(u),  = deg(G(u)) and  = deg(H(u)),
satisfy the conditions

deg(X(u)) ≤ 2 N – 2 ≤  + ;  ≤ deg(P(u)) = N, (18)
then Q(u) in (17) is same as the quotient  X(u) / P(u) .

A generalization of G(u) and H(u) from polynomials of the type ua
is crucial. A choice of degrees that satisfy (18) is  =  = N. G(u) and
H(u) can be identical. This analysis leads to the following new BA-P:

A New Barrett Algorithm for A(u)  B(u) mod P(u) (BA-P)

Input: A(u), B(u), P(u), G(u), H(u); 0 ≤ deg(A(u)), deg(B(u)) < N, N
= deg(P(u)),  = deg(G(u)),  = deg(H(u)).

Output: Q(u) (quotient when A(u)  B(u) is divided by P(u))
Step 0. Pre-compute (u) =  G(u)  H(u) / P(u) ,

deg((u)) =  +  – N (one-time)
Compute

1179

Step 1. X(u) = A(u)  B(u), deg(X(u)) ≤ 2  N – 2 (ordinary mult)
Step 2. D(u) =  X(u) / G(u) , deg(D(u)) ≤ 2  N –  – 2 (quotient)
Step 3. E(u) = D(u)  (u), deg(E(u)) ≤ N +  – 2 (ordinary mult)
Step 4. Q(u) =  E(u) / H(u) , deg(Q(u)) ≤ N – 2 (quotient)
Once Q(u) is computed, remainder X(u) mod P(u) is computed as
Step 5. C(u) = X(u) – Q(u)  P(u), deg(C(u)) ≤ N – 1. (ordinary mult)
The conditions in (18) required for G(u) and H(u) are general and
open door to a range of possibilities for different computational steps.

Example 1. Assume that the computation is defined in GF(2). Let N
= 6, P(u) = u6 + u + 1. We can choose G(u) = u6 + 1, H(u) = u6 + 1.
Then (u) = u6 + u + 1. Let X(u) = u10 + u9 + u8 + u4 + u2 + 1. We
have D(u) = u4 + u3 + u2, E(u) = u10 + u9 + u8 + u5 + u2. Q(u) = u4 +
u3 + u2, Q(u)  P(u) = u10 + u9 + u8 + u5 + u2, C(u) = u5 + u4 + 1.

Example 2. Let the computation be defined in GF(2) with G(u) =
H(u) and (u) = P(u). Then, G(u)2 = P(u)2 + R(u), deg(R(u)) < N. If

  



N

i

i
iuGuG

0

 and   



N

i

i
iuPuP

0

, then   



N

i

i
iuGuG

2

0

22 and

  



N

i

i
iuPuP

2

0

22 . A trivial solution to G(u)2 = P(u)2 + R(u) is G(u)

= P(u), R(u) = 0. Other possibilities are  
 







21

0

2
N

i

i
iuRuR , where Ri

 GF(2) and can take any values. This results in Gi = Pi + Ri, i = 0,
..., (N – 1) / 2; Gi = Pi, i = (N + 1) / 2, ..., N.

Analysis in Example 2, though applicable to GF(2) only, can be
used to identify other desirable forms for G(u) and H(u) for a given
P(u) including those that require no pre-computation [19]. Analysis
in [19] focuses only on G(u) = uN and Pi = 0 for i =  N / 2 , ..., N –
1. In general, G(u)  H(u) = (u)  P(u) + R(u), deg(R(u)) < N. Hence,
for a given (u) and arbitrary R(u), deg(R(u)) < N, numerous
possibilities exist for G(u) and H(u). We can choose G(u) and H(u) to
simplify computations in steps 2 and 4 as shown in section IV. Next
section establishes RPS based BA-P. The results are general and
valid for GF(pa), p a prime, and rational, real, and complex numbers.

IV. RPS BASED BARRETT ALGORITHM FOR POLYNOMIALS

 We turn to a RPS based BA-P for computation in Steps 1-5. All
polynomials need to be expressed as residues in RPS defined mod
M(u). Step 0 involves a one-time computation, so it is easy to map to
RPS. Steps 1, 3, and 5 involve ordinary polynomial multiplication.
Hence they are also straightforward to map to RPS. Steps 2 and 4
require computation of quotient up on division by G(u) and H(u),
respectively. As seen in Appendix, in order to compute these two
steps in residue arithmetic, both G(u) and H(u) must be a factor of
M(u). Also, since BA-P is to be used recursively for carrying out
MPE, we use the same RPS in all Steps 1-5. In addition, for residues
to correspond to the actual polynomials in Steps 1-5, deg(M(u)) must
exceed the maximum value of degree of polynomial at each step.

Given P(u), G(u), and H(u) that satisfy Theorem 1, it is easy to
calculate the smallest degree of M(u) that is larger than the largest
degree polynomial in steps 1-5. We note that gcd(G(u), H(u)) = 1 is
not required. We propose to compute the quotients as required in
steps 2 and 4 using the algorithm described in Appendix. Since this
algorithm requires modulo inverses, it works only when the various
moduli polynomials are relatively co-prime. Also, the result of  X(u)
/ G(u)  is known in terms of residues for the moduli that constitute
M(u) / G(u). Thus, for the quotient residues to be computed in step 2,
we require gcd(G(u), M(u) / G(u)) = 1. Similarly, it is also required

that gcd(H(u), M(u) / H(u)) = 1 for quotient residues in step 4. Based
on this discussion and Theorem 1, we have the following additional
conditions for the RPS based on M(u) to be used in BA-P:
1. largest degree of polynomials in Steps 1-5 < deg(M(u)) = L
2. G(u) | M(u) 3. H(u) | M(u)
4. gcd(G(u), M(u) / G(u)) = 1 5. gcd(H(u), M(u) / H(u)) = 1.

 A number of possibilities become apparent. We can select G(u) and
H(u) first that satisfy the above conditions. Then M(u) is constructed
such that lcm(G(u), H(u)) | M(u). Finally, if needed further residues
are included in M(u) to satisfy the first condition. Also, it is possible
to select M(u) first and then G(u) and H(u) in terms of factors of
M(u). For instance, if  =  = N, then L > 2  N – 2.

This description of RPS based BA-P via quotient residues brings
out another aspect. Computations in steps 1, 3 and 5 are performed
mod M(u). After Step 2, quotient  X(u) / G(u)  is available in
residues for M(u) / G(u). Hence, we need BEX-P to expand quotient
residues back to mod M(u). Similarly, we need BEX-P to expand
quotient residues of  E(u) / H(u)  computed mod M(u) / H(u) to
mod M(u). Such a BEX-P algorithm is described in Section II.

A RPS based new Barrett Algorithm for Polynomials (BA-MPM)
Given: M(u), G(u), H(u). Let M(u) have n factors.
In step 2a, first a factors of M(u) give G(u); and in step 4a, first b
factors of M(u) give H(u). There is no loss in generality.
Input: Residues of A(u) and B(u), (Ai(u), Bi(u)  (A(u), B(u)) (mod
Mi(u)), i = 1, ..., n.
Pre-computational Step:
Step 0. Compute i(u), i = 1, ..., n, (u) =  G(u)  H(u) / P(u) .
Computational Steps:
Step 1. Modulo mult. Xi(u)  Ai(u)  Bi(u), i = 1, …, n.
Step 2a. Quotient. Quotient residues Di(u), i = a + 1, …, n, from
residues Xi(u) , i = 1, ..., n, and moduli Gi(u), i = 1, ..., a.
Step 2b. BEX-P. Use BEX-P on Di(u), i = a + 1, ..., n, to get a
residues Di(u), i = 1, ..., a.
Step 3. Modulo mult. Ei(u)  Di(u)  i(u), i = 1, ..., n.
Step 4a. Quotient. Quotient residues Qi(u), i = b + 1, ..., n, from
residues Ei(u), i = 1, ..., n, and moduli Hi(u), i = 1, ..., b.
Step 4b. BEX-P. Use BEX-P on Qi(u), i = b + 1, ..., n, to get b
residues Qi(u), i = 1, ..., b.
Step 5. Remainder. Ci(u)  Xi(u) – Qi(u)  Pi(u), i = 1, …, n.
Provided that L –  > N – 1 (a rather trivial condition at this stage),
Steps 4b and 5 may also be swapped. In that case, we have:
Step 5. Remainder. Ci(u)  Xi(u) – Qi(u)  Pi(u), i = b + 1, …, n.
Step 6. BEX-P. Use BEX-P on residues Ci(u), i = b + 1, ..., n, to get
b residues Ci(u), i = 1, ..., b.

Example 3. Let the computation be defined in GF(2). Let N = 2P – 1,
and  =  = N. In this case, deg(M(u)) > 2  N – 2. We choose M(u) =
(uN – 1)  [(uN+2 – 1) / (u – 1)] with G(u) = H(u) = uN – 1. Also, gcd(ua
– 1, ub – 1) = ugcd(a, b) – 1. In our case, N and N + 2 are two
consecutive odd integers, hence gcd(N, N + 2) = 1. Thus, uN – 1 and
[(uN+2 – 1) / (u – 1)] are co-prime. The factorization of uN – 1 in
GF(2) using GF(2P) is well-known with each factor having degree P
or less. Factorization of uN+2 – 1 can be obtained from the
factorization of uA – 1, A = 22P – 1 as 22P – 1 = (2P – 1)  (2P + 1).
Consequently, the factorization of uN+2 – 1 in GF(2) using GF(22P) is
obtained with factors having degree 2  P or less. The computation
A(u)  B(u) mod P(u) with N = 2P – 1 is performed using arithmetic
where half the moduli have degree P or less and the other half have
degree 2  P or less. These techniques can be extended for N such that
N | (2P – 1). These computations correspond to circular convolutions.
Example 4. We pursue previous example. Let P = 10, and N =  = 
= 1,023. Thus, N takes a large value. In this case, u1,023 – 1 has factors

1180

of degree 10 or less. Similarly, u1,025 – 1 has factors of degree 20 or
less. Let M(u) = (u1,023 – 1)  [(u1,025 – 1) / (u – 1)] with G(u) = H(u) =
u1,023 – 1. Here, we assume that deg(A(u)) = deg(B(u)) = N – 1 =
1,022. If A(u) and B(u) have degree less than 1,022, then we pad
them with 0’s and treat them as polynomials of degree 1,022. Thus,
A(u)  B(u) mod P(u), N = 1,023, is computed using arithmetic where
half the moduli have degree up to 10 and half have degree up to 20.
Example 5. Consider A(u)  B(u) mod P(u) in the field of real or
complex numbers. We let G(u) = H(u) = uN – 1 and M(u) = u2N – 1 =
(uN – 1)  (uN + 1). Let  be the 2  N root of unity. In this case,
computations use DFT and IDFT via FFT. For instance, X(u) in step
1 can be computed using a size 2  N DFT. In step 2a, let R(u) denote
the remainder X(u) mod G(u). Then R(u) is computed as a size N
IDFT of the even DFT coefficients of X(u). We write

D(u) = [X(u) – R(u)] / (uN – 1).
Substituting odd powers of , we get,

D(2k+1) = –0.5  [X(2k+1) – R(2k+1)], k = 0, ..., N – 1.
Computation of R(2k+1) is same as a size N DFT of sequence Ri  i, i
= 0, ..., N – 1. D(2k+1) is same as a size N DFT of sequence Di  i, i
= 0, ..., N – 1. The computation of D(u) in step 2a is performed by first
taking size N IDFT of D(2k+1), k = 0, ..., N – 1, obtaining the
sequence Di  i, i = 0, ..., N – 1, and then constructing Di, i = 0, ..., N
– 1. The BEX-P in step 2b consists in taking size N DFT of D(u). Step
4 is similar to step 2. A total of 2 IDFT and 2 DFT, each of size N, are
needed in steps 2 and 4. Steps 0, 1, 3, and 5 are straightforward.

V. FURTHER ANALYSIS

We describe an algorithm for MPE, called BA-MPE, that uses the
new RPS based BA-MPM. Let BA-MPM that computes C(u) =
A(u)  B(u) mod P(u) be denoted by BA-MPM(A, B).

BA-MPE. Here, 1 denotes vector of all 1s.

Input: Residue vector A(u) for A(u), P(u), and E, .

Output: Residue vector C(u) for C(u), C(u) = A(u)E mod P(u).
1. If e0 = 1 C(u)  A(u) else C(u)  1
2. For j = 1 to k do
 A(u)  BA-MPM(A, A)
 If ej = 1 then
 C(u)  BA-MPM(C, A)
 end If
 end For.

VI. CONCLUSIONS

In this work, new Barrett algorithms are described for computing
A(u)  B(u) mod P(u) and A(u)E mod P(u), P(u) being an
irreducible polynomial of degree N. A residue polynomial system
based new Barrett algorithm is described that uses only residue
arithmetic thus avoiding large degree polynomial multiplication
that may be computationally intensive. All the algorithms as
described here are a first. The previously known Barrett
algorithms use powers of u to scale the various computations.

VII. ACKNOWLEDGMENT

The work of H.K. Garg is supported by the Singapore National
Research Foundation under its International Research Centre @
Singapore Funding Initiative and administered by the Interactive
Digital Media Programme Office at the NUS- ZJU Sensor-Enhanced
Social Media (SeSaMe) Centre. The work of Hanshen Xiao is
supported by Initiative Scientific Research Pro- gram of Tsinghua
University under Grant No. 2015THZ0 & 20161080166.

APPENDIX: Computing Quotient Residues in RPS

Problem. Given residues Xi(u) of X(u), Xi(u)  X(u) mod Mi(u), i

= 1, …, n, M(u) = MI(u)  MII(u), MI(u) =  


a

i

i uM
1

, MII(u) =

 


n

ai

i uM
1

, gcd(MI(u), MII(u)) = 1, compute residues of quotient

Q(u) when X(u) is divided by MI(u), deg(Q(u)) < deg(MII(u)).
We revisit polynomial arithmetic described in Section II and use it
to get an algorithm for computing residues of Q(u). Consider (1)
when X(u), A1(u) and R1(u) are known. We compute Q1(u) as

Q1(u) = (X(u) – R1(u))  A1(u) –1. (A1)
When Q1(u), A2(u) and R2(u) are known, we compute Q2(u) as

Q2(u) = (Q1(u) – R2(u))  A2(u) –1. (A2)
This is carried out recursively to finally compute Qa(u) as

Qa(u) = (Qa – 1(u) – Ra(u))  Aa(u) –1. (A3)
The representation of X(u) in (6) is valid. It is reproduced below:

X(u) = Qa(u)  [Aa(u)  A1(u)] + [Ra(u)  (Aa–1(u) 
 A1(u)) + … + R2(u)  A1(u) + R1(u)]. (A4)

We apply the arithmetic in (A1)-(A4) to RPS defined mod M(u).
Given moduli Mi(u) and residues Xi(u), i = 1, …, n, we set

Ai(u) = Mi(u). (A5)
Thus, R1(u) = X1(u). This leads to,

Q1(u) = (X(u) – X1(u))  M1
–1(u) (A6)

Since X(u) is expressed in terms of its residues and M1
–1(u) exists

only mod Mi(u), i = 2, ..., n, we compute residues of Q1(u) in (A6)
by taking mod Mi(u), i = 2, ..., n, of both sides. Thus,

Q1,i(u)  (Xi(u) – X1(u))  M1(u) –1 (mod Mi(u)), i = 2, ..., n.
As deg(Q1(u)) = deg(X(u)) – deg(M1(u)) < deg(M(u)) –

deg(M1(u)) , Q1(u) is uniquely expressed by its

residues Q1,i(u), i = 2, ..., n. After the 1st iteration in (A1),
R2(u)  Q2(u) (mod M2(u)) = Q1, 2(u). (A7)

Expressing (A7) in residue form, we compute residues of Q2(u)
by taking mod Mi(u), i = 3, ..., n, of both sides. This results in
 Q2,i(u)  (Q1,i(u) – Q1,2(u))  M2(u) –1 mod Mi(u), i = 3, ..., n.

Again, deg(Q2(u)) . Thus, Q2(u) is expressed in

terms of its residues Q2,i(u), i = 3, ..., n.
This process is iterated a times to compute residues of Qk(u) or

Qk,i(u), i = k + 1, ..., n, k = 1, ..., a. At the end, (A4) becomes
X(u) = Qa(u)  (Ma(u)  M1(u)) + [Ra(u)  (Ma – 1  M1(u))
 + … + R2(u)  M1(u) + R1(u)].

Thus, Qa(u) is the quotient obtained by dividing X(u) by MI(u)
expressed in terms of its residues Qa,i(u), i = a + 1, …, n.
An algorithm to compute quotient polynomials
Input: RPS defined mod M(u); M(u) = MI(u)  MII(u); residues of
X(u), Xi(u)  X(u) (mod Mi(u)), i = 1, ..., n.
Output: Residues of Q(u) mod Mi(u), i = a + 1, …, n, Q(u) being
quotient when X(u) is divided by MI(u).
Initialization:

Q0,i(u) = Xi(u), i = 1, …, n.
Computational Step: For k = 1, …, a,

Qk,i(u)  (Qk–1,i(u) – Qk –1,k(u))  Mk(u)–1 (mod Mi(u)),
i = k + 1, ..., n.

Output: Qi(u) = Qa,i(u), i = a + 1, ..., n.
In general, computations in each iteration can be performed in
parallel. All the modular inverses can be pre-computed and stored.

1181

REFERENCES

[1] PL Montgomery, “Modular Multiplication without Trial
Division,” Math. of Comp., vol 44, 1985, pp 519-521.

[2] PV Ananda Mohan, Residue Number Systems, Algorithms and
Architectures, Springer Int. Series in Engg. & Comp. Sc., 2002.

[3] A Omondi & B Premkumar, Residue Number Systems, Theory
& Implementation, Imperial College Press, Advances in Comp.
Sc. & Engg., 2007.

[4] J-C Bajard & T Plantard, “RNS Bases and Conversions,” Proc.
SPIE, vol 5559, 2004, pp 60-69.

[5] AP Shenoy & R Kumaresan, “Fast Base Extension Using a
Redundant Modulus in RNS,” IEEE Trans. on Comp., vol 38,
1989, pp 292-297.

[6] J-C Bajard, L-S Didier & P Kornerup, “Modular Multiplication
and Base Extensions in Residue Number Systems,” IEEE Symp.
on Comp. Arithmetic, 2001, pp 59-65.

[7] S Kawamura, M Koike, F Sano & A Shimbo, “Cox-Rower
Architecture for Fast Parallel Montgomery Multiplication,”
EUROCRYPT 2000, Springer Lect. Notes in Comp. Sc., vol
1807, 2000, pp 523-538.

[8] F Gandino, F Lamberti, G Paravati, J-C Bajard & P Montuschi,
“An Algorithmic and Architectural Study on Montgomery
Exponentiation in RNS,” IEEE Trans. on Comp., vol 61, 2012,
pp 1071-1083.

[9] KC Posch & R Posch, “Modulo Reduction in Residue Number
Systems,” IEEE Trans. on Parallel & Distributed Systems, vol 6,
1995, pp 449-454.

[10] J Bajard, L-S Didier, & P Kornerup, “An RNS Montgomery
Modular Multiplication Algorithm,” IEEE Trans. on Comp., vol
47, 1998, pp 766-776.

[11] H Nozaki, M Motoyama, A Shimbo, & S Kawamura,
“Implementation of RSA Algorithm Based on RNS
Montgomery Multiplication,” CHES 2001, vol 2162, 2001, pp
364-376.

[12] KA Gbolagade & SD Cotofana, “An O(n) Residue Number
System to Mixed Radix Conversion technique,” ISCAS, 2009,
pp 521-524.

[13] P Barrett, “Implementing the Rivest Shamir and Adleman Public
Key Encryption Algorithm on a Standard Digital Signal
Processor,” CRYPTO 1986, Lect. Notes in Comp. Sc., Springer,
vol 263, 1987, pp 311–323.

[14] CK Koc & T Acar, “Montgomery Multiplication in GF(2k),”
Design, Codes & Cryptography, vol 14, 1998, pp 57-69.

[15] J-F Dhem, “Efficient Modular Reduction Algorithm in Fq[x]
and Its Application to Left to Right Modular Multiplication in

F2[x],” Proc. Int. Work. on CHES, Lect. Notes in Comp. Sc.,
Springer-Verlag, 2003, pp 203–213.

[16] M Knezevic, F Vercauteren, & I Verbauwhede, “Speeding up
Barrett and Montgomery Modular Multiplications,”
http://homes.esat.kuleuven.be/~fvercaut/papers/bar_mont.pdf.

[17] F Angelini & M Bucci, “Reduction Algorithms for
Polynomials,”
http://accounts.unipg.it/~angelini/welcome_file/redalg.pdf.

[18] ED Win, A Bosselaers, S Vandenberghe, PD Gersem, &
J Vandewalle, “A Fast Software Implementation for Arithmetic
Operations in GF(2n),” ASIACRYPT’96, vol 1163, Lect. Notes
in Comp. Sc., Springer, 2005, pp 65-76.

[19] M Knezevic, K Sakiyama, J Fan, & I Verbauwhede, “Modular
Reduction in GF(2n) Without Pre-computation Phase,” Chapter,
Arithmetic of Finite Fields, vol 5130, Lect. Notes in Comp. Sc.,
Springer, 2008, pp 77-87.

[20] J Bajard, L Imbert, & T Plantard, “Arithmetic Operations in the
Polynomial Modular Number Systems,” IEEE Symp. on Comp.
Arithmetic, 2005, pp 206-213.

[21] T Acar & D Shumow, “Modular Reduction without Pre-
Computation for Special Moduli,”
http://research.microsoft.com/pubs/120244/modmul_no_precom
p.pdf.

[22] D Schinianakis, A Skavantzos, & T Stouraitis, “GF(2n)
Montgomery Multiplication using Polynomial Residue
Arithmetic,” ISCAS, 2012, pp 3033-3036.

[23] C Ding, D Pei, & A Salomaa, Chinese Remainder Theorem,
Applications in Computing, Coding, and Cryptography, World
Scientific, 1996.

[24] NS Szabo & RI Tanaka, Residue Arithmetic and its
Applications to Computer Technology, McGraw-Hill, NY,
1967.

[25] A Menezes, P van Oorschot, & S Vanstone, Handbook of
Applied Cryptography, CRC Press, USA, 1996.

[26] LC Washington, Elliptic Curves: Number Theory &
Cryptography, CRC Press, USA, 2008.

[27] D Hankerson, A Menezes & S Vanstone, Guide to Elliptic
Curve Cryptography, Springer-Verlag NY, 2004.

[28] Z Cao, R Wei, & X Lin, “A Fast Modular Reduction Method,”
IACR Cryptology ePrint Archive, 2014.

[29] H Krishna, B Krishna, K-Y Lin & J-D Sun, Computational
Number Theory and Digital Signal Processing: Fast Algorithms
and Error Control Techniques, CRC Press, USA, 1994.

1182

