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Abstract— We derive a new computational algorithm for 
Barrett technique for modular polynomial multiplication, termed 
BA-P. Residue arithmetic is applied to BA-P to obtain a new 
Barrett algorithm for modular polynomial multiplication (BA-
MPM). The work is focused on an algorithm that carries out 
computation using modular arithmetic without conversion to 
large degree polynomials. There are several parts to this work. 
First, we set up a new BA-P using polynomials other than u. 
Second, residue arithmetic based BA-MPM is described. A 
complete mathematical framework is described including proofs 
for the results. Third, we present a computational procedure for 
BA-MPM. Fourth, the BA-MPM is used as a basis for algorithms 
for modular polynomial exponentiation (MPE). Applications are 
in areas of signal security and cryptography. 

Keywords—Barrett Algorithm (BA), BA for Polynomials (BA-
P), Modular Polynomial Multiplication (MPM), Montgomery 
Multiplication (MM), Residue Polynomial Systems (RPS), Chinese 
Remainder Theorem for Polynomials (CRT-P), BA-P based on 
MPM (BA-MPM), Modular Polynomial Exponentiation (MPE), 
Base Extension for Polynomials (BEX-P). 

 

I. INTRODUCTION 

CRYPTOGRAPHY TECHNIQUES play an important role in the security 
of electronic systems. Instances of such cryptography techniques 
include RSA (Rivest-Shamir-Adelman), Rabin, Diffie Hellman and 
El Gamal. These techniques deal with arithmetic defined in a large 
size finite fields GF(p) and/or GF(pN), where p is a prime integer and 
N is an integer. A large size field may be realized by setting p = 2 
(binary arithmetic) and N to be a large value. Here, we also deal with 
finite fields with large values of N, say 500 to 5,000. The elements in 
GF(2N) are expressed as polynomials over GF(2) of degree up to N – 
1. A challenge is to perform the following computations efficiently: 
1. Multiplication of two elements in GF(2N):  

C(u) = A(u)  B(u) (mod P(u)); deg(P(u)) = N; and 
2. Modular exponentiation in GF(2N):  

C(u) = A(u)E (mod P(u)); deg(P(u)) = N. 
Here, P(u) is an irreducible (or primitive) polynomial in GF(2). This 
eliminates use of Chinese remainder theorem for polynomials (CRT-
P) to compute C(u). Computations in 1 and 2 without mod P(u) are 
simpler while mod P(u) computation is challenging. Also modular 
polynomial exponentiation (MPE) is computed via repeated use of 
modular polynomial multiplication (MPM). Hence, an efficient 
algorithm must be used for MPM. In many situations, N is large.     

Residue arithmetic is used to express a large size ring as a direct 
product of a number of smaller size rings. Residue number systems 
have been applied in Barrett algorithm (BA) and Montgomery 
multiplication (MM), to compute modular operations in large size 

integer rings. However, there is a distinct gap when it comes to 
Residue Polynomial Systems (RPS) based BA and MM.  

Contributions of the work are as follows. The primary objective is 
to compute MPM and MPE efficiently for applications in signal 
security and cryptography. We first describe a new BA for modular 
polynomial multiplication (BA-P) for computing the quotient C(u) 
associated with X(u) when it is divided by P(u). It is assumed that N 
= deg(P(u)) is a large integer. Second, a residue arithmetic based BA-
P, termed BA-MPM, is described for modular polynomial 
multiplication. Third, a computationally efficient procedure for the 
new BA-MPM is described. Fourth, the new BA-MPM is used as a 
basis for MPE. The results are general and valid for all fields such as 
GF(pN), rational, real, and complex numbers.   

There is an abundance of research on MM and BA [1]-[13]. 
Polynomial versions of MM and BA can be found in [14]-[22]. A 
digit-serial multiplication in GF(2N) based on Barrett modular 
reduction is presented in [15]. A version of digit-serial multiplication 
algorithm is described in [16]. Other aspects are explored in [19]. 
Further details of BA and MM are available in [23]-[28]. 

However, there is no paper on using residue arithmetic to compute 
MPM and MPE via BA. It is this particular aspect that we deal with 
in this paper. The algorithm described here begins with reformulating 
BA such that the new BA-P stays within residue arithmetic.   

The organization of this paper is as follows. Section II provides 
mathematical preliminaries on arithmetic, BA-P, RPS, CRT-P, and 
base extension for polynomials (BEX-P). The new BA-P is described 
in Section III. The computational steps for RPS based BA-P 
algorithm are presented in Section IV. Examples are presented to 
illustrate the algorithm. In Section V, we describe an algorithm for 
MPE that uses the new BA-MPM. Section VI is on conclusions.  

II. MATHEMATICAL PRELIMINARIES 

Polynomial Arithmetic. Given X(u) and A1(u) with coefficients in a 
field F, consider dividing X(u) by A1(u) to write 

X(u) = Q1(u)  A1(u) + R1(u).                              (1)  
Here, Q1(u) is quotient and R1(u) is remainder. Also, deg(R1(u)) < 
deg(A1(u)) with deg(Q1(u)) = deg(X(u)) – deg(A1(u)). We write (1) as 

X(u)  R1(u) mod A1(u).           (2) 
Dividing both sides of (1) by A1(u), we get, 

 X(u) / A1(u) = Q1(u) + R1(u) / A1(u).   (3) 
The last term on the right when expressed as a sum of powers of u 
will only contain negative powers. We also write 

Q1(u) =  X(u) / A1(u) ,                                  (4) 
 Y(u)  being the floor function of Y(u). Q1(u) and R1(u) are unique. 
This process can be repeated between Q1(u) and A2(u). Thus 

Q1(u) = Q2(u)  A2(u) + R2(u),                           (5) 
0 ≤ deg(R2(u)) < deg(A2(u)). A generalization of (5) leads to  

X(u) = Qa(u)  [(Aa(u)  A1(u)] + [Ra(u)  {Aa –1(u)  A1(u)} + 
 + R2 (u)  A1 (u) + R1(u)].   (6) 
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This expression is useful in computations involving RPS and BEX-P. 
 
Barrett Algorithm for Polynomials (BA-P). Given A(u), B(u), and 
P(u) in GF(p), deg(A(u)), deg(B(u)) < deg(P(u)) = N, MPM 
computes: 

C(u) = A(u)  B(u) mod P(u).                  (7) 
Let X(u) = A(u)  B(u). BA-P computes quotient Q(u) such that X(u) = 
Q(u)  P(u) + C(u); deg(C(u)) < N. Then C(u) is computed as C(u) = 
X(u) – Q(u)  P(u). Given X(u) and P(u) BA-P expresses Q(u) as 

Q(u) =  X(u) / P(u) ,                                  (8) 
In the current versions of BA-P [14]-[22], (8) is computed as 
Q(u) =  X(u) / ua  (u) / ua+b    X(u) / ua   (u)  / ub,        (9) 
where  (u)  is pre-computed as (u) =  (u)  =  ua+b / P(u) . 
Scalars a and b are chosen such that Q(u) in (9) is same as Q(u) in (8) 
[15, 16]. BA-P consists of steps:  
0: Pre-compute (u) =  ua+b / P(u) ;  
Compute: 
1: X(u) = A(u)  B(u); 2: D(u) =  X(u) / ua ; 3: E(u) = D(u)  (u);        
4: Q(u) =  E(u) / ub ; 5: C(u) = X(u) – Q(u)  P(u).  
 
Residue Polynomial System (RPS) [23, 29]. A RPS defined mod 
M(u) is a ring defined by n co-prime polynomials M1(u), M2(u), ..., 
Mn(u) with elements in field F. The elements in RPS are polynomials 
of degree up to L – 1, L = deg(M(u)), where 

.    (10)  

A polynomial X(u) in the RPS is represented as n residues, 
X(u)  X(u)  [X1(u) X2(u)  Xn(u)],                (11) 

where Xi(u)  X(u) (mod Mi(u)), i = 1, 2, ..., n.        
 
Chinese remainder theorem for polynomials (CRT-P) [2, 3, 23, 
29]. Given X(u), X(u), deg(X(u)) < L, is computed via CRT-P, as 

.   (12) 

Polynomials Ti(u), deg(Ti(u)) < deg(Mi(u)), are computed a-priori via 
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of X(u) involves large degree polynomials.  
 
Base Extension for Polynomials (BEX-P). Consider X(u), residues 
of X(u) in (11). BEX-P consists in computing t additional residues of 
X(u), Xj(u)  X(u) (mod Mj(u)), j = n + 1, ..., n + t, in a RPS defined 
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 j = n + 1, ..., n + t.                       (13) 
 

III. A NEW BARRETT ALGORITHM FOR POLYNOMIALS 

A RPS based Montgomery multiplication algorithm has been 
described in [22]. However, there is no such algorithm for the BA-P. 
We cite [15, 16, 19] and the references therein. They have used 
modulo polynomials of the type ua. Clearly, this doesn’t lend itself to 
RPS. Here, we first revisit the computation of Q(u) in (8). We now 

introduce two polynomials G(u) and H(u), not necessarily of the form 
ua, and approximate Q(u) in (8) as 

Q(u) =  X(u) / G(u)  (u) / H(u)   
           X(u) / G(u)   (u) / H(u) .       (14) 

(u) is pre-computed as (u) =  (u)  =  G(u)  H(u) / P(u) . Since 
X(u) = A(u)  B(u), deg(A(u)), deg(B(u)) < N, deg(X(u)) ≤ 2  N – 2.  

Now we derive conditions on G(u) and H(u) for approximation of 
Q(u) in (14) to be equal to Q(u) in (8).  V(u)  is polynomial part of 
V(u) consisting of terms with positive powers of u. Consider 
dividing V(u) by S(u) to write V(u) = Q(u)  S(u) + R(u). Then we 
have  

            V(u) / S(u) = Q(u) + R(u) / S(u)  
                  =  V(u) / S(u)  + (u), deg((u)) ≤ –1.       (15) 

Applying (15) to (14), we get 
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      =  A + B ,  

where A 
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Here, deg((u)), deg((u)) ≤ –1. We wish the second term in the 
above summation to have degree less than 0. To achieve that,   
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We assume these conditions to be satisfied. Thus (16) becomes:  
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as deg((u)) ≤ –1. We note that deg((u)) = deg(G(u)) + deg(H(u)) – 
deg(P(u)). This analysis leads to the following theorem: 
Theorem 1. Let A(u), B(u) and P(u) be given such that 0 ≤ deg(A(u)), 
deg(B(u)) < deg(P(u)) = N. For the computation X(u) mod P(u), X(u) 
= A(u)  B(u), if G(u) and H(u),  = deg(G(u)) and  = deg(H(u)), 
satisfy the conditions 

deg(X(u)) ≤ 2 N – 2 ≤  + ;  ≤ deg(P(u)) = N,   (18) 
then Q(u) in (17) is same as the quotient  X(u) / P(u) .  

A generalization of G(u) and H(u) from polynomials of the type ua 
is crucial. A choice of degrees that satisfy (18) is  =  = N. G(u) and 
H(u) can be identical. This analysis leads to the following new BA-P: 
 
A New Barrett Algorithm for A(u)  B(u) mod P(u) (BA-P) 

Input: A(u), B(u), P(u), G(u), H(u); 0 ≤ deg(A(u)), deg(B(u)) < N, N 
= deg(P(u)),  = deg(G(u)),  = deg(H(u)).  

Output: Q(u) (quotient when A(u)  B(u) is divided by P(u))  
Step 0.  Pre-compute (u) =  G(u)  H(u) / P(u) ,  

deg((u)) =  +  – N (one-time) 
Compute 
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Step 1.  X(u) = A(u)  B(u), deg(X(u)) ≤ 2  N – 2 (ordinary mult) 
Step 2.  D(u) =  X(u) / G(u) , deg(D(u)) ≤ 2  N –  – 2 (quotient) 
Step 3.  E(u) = D(u)  (u), deg(E(u)) ≤ N +  – 2 (ordinary mult) 
Step 4.  Q(u) =  E(u) / H(u) , deg(Q(u)) ≤ N – 2  (quotient)  
Once Q(u) is computed, remainder X(u) mod P(u) is computed as  
Step 5.  C(u) = X(u) – Q(u)  P(u), deg(C(u)) ≤ N – 1. (ordinary mult) 
The conditions in (18) required for G(u) and H(u) are general and 
open door to a range of possibilities for different computational steps.      
 
Example 1. Assume that the computation is defined in GF(2). Let N 
= 6, P(u) = u6 + u + 1. We can choose G(u) = u6 + 1, H(u) = u6 + 1. 
Then (u) = u6 + u + 1. Let X(u) = u10 + u9 + u8 + u4 + u2 + 1. We 
have D(u) = u4 + u3 + u2, E(u) = u10 + u9 + u8 + u5 + u2. Q(u) = u4 + 
u3 + u2, Q(u)  P(u) = u10 + u9 + u8 + u5 + u2, C(u) = u5 + u4 + 1. 
 
Example 2. Let the computation be defined in GF(2) with G(u) = 
H(u) and (u) = P(u). Then, G(u)2 = P(u)2 + R(u), deg(R(u)) < N. If 

  



N

i

i
iuGuG

0

 and   



N

i

i
iuPuP

0

, then   



N

i

i
iuGuG

2

0

22  and 

  



N

i

i
iuPuP

2

0

22 . A trivial solution to G(u)2 = P(u)2 + R(u) is G(u) 

= P(u), R(u) = 0. Other possibilities are  
 







21

0

2
N

i

i
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 GF(2) and can take any values. This results in Gi = Pi + Ri, i = 0, 
..., (N – 1) / 2; Gi = Pi, i = (N + 1) / 2, ..., N.  

Analysis in Example 2, though applicable to GF(2) only, can be 
used to identify other desirable forms for G(u) and H(u) for a given 
P(u) including those that require no pre-computation [19]. Analysis 
in [19] focuses only on G(u) = uN and Pi = 0 for i =  N / 2 , ..., N – 
1. In general, G(u)  H(u) = (u)  P(u) + R(u), deg(R(u)) < N. Hence, 
for a given (u) and arbitrary R(u), deg(R(u)) < N, numerous 
possibilities exist for G(u) and H(u). We can choose G(u) and H(u) to 
simplify computations in steps 2 and 4 as shown in section IV. Next 
section establishes RPS based BA-P. The results are general and 
valid for GF(pa), p a prime, and rational, real, and complex numbers. 

IV. RPS BASED BARRETT ALGORITHM FOR POLYNOMIALS 

    We turn to a RPS based BA-P for computation in Steps 1-5. All 
polynomials need to be expressed as residues in RPS defined mod 
M(u). Step 0 involves a one-time computation, so it is easy to map to 
RPS. Steps 1, 3, and 5 involve ordinary polynomial multiplication. 
Hence they are also straightforward to map to RPS. Steps 2 and 4 
require computation of quotient up on division by G(u) and H(u), 
respectively. As seen in Appendix, in order to compute these two 
steps in residue arithmetic, both G(u) and H(u) must be a factor of 
M(u). Also, since BA-P is to be used recursively for carrying out 
MPE, we use the same RPS in all Steps 1-5. In addition, for residues 
to correspond to the actual polynomials in Steps 1-5, deg(M(u)) must 
exceed the maximum value of degree of polynomial at each step. 

Given P(u), G(u), and H(u) that satisfy Theorem 1, it is easy to 
calculate the smallest degree of M(u) that is larger than the largest 
degree polynomial in steps 1-5. We note that gcd(G(u), H(u)) = 1 is 
not required. We propose to compute the quotients as required in 
steps 2 and 4 using the algorithm described in Appendix. Since this 
algorithm requires modulo inverses, it works only when the various 
moduli polynomials are relatively co-prime. Also, the result of  X(u) 
/ G(u)  is known in terms of residues for the moduli that constitute 
M(u) / G(u). Thus, for the quotient residues to be computed in step 2, 
we require gcd(G(u), M(u) / G(u)) = 1. Similarly, it is also required 

that gcd(H(u), M(u) / H(u)) = 1 for quotient residues in step 4. Based 
on this discussion and Theorem 1, we have the following additional 
conditions for the RPS based on M(u) to be used in BA-P: 
1. largest degree of polynomials in Steps 1-5 < deg(M(u)) = L  
2. G(u) | M(u)            3. H(u) | M(u) 
4. gcd(G(u), M(u) / G(u)) = 1           5. gcd(H(u), M(u) / H(u)) = 1. 

 A number of possibilities become apparent. We can select G(u) and 
H(u) first that satisfy the above conditions. Then M(u) is constructed 
such that lcm(G(u), H(u)) | M(u). Finally, if needed further residues 
are included in M(u) to satisfy the first condition. Also, it is possible 
to select M(u) first and then G(u) and H(u) in terms of factors of 
M(u). For instance, if  =  = N, then L > 2  N – 2. 

This description of RPS based BA-P via quotient residues brings 
out another aspect. Computations in steps 1, 3 and 5 are performed 
mod M(u). After Step 2, quotient  X(u) / G(u)  is available in 
residues for M(u) / G(u). Hence, we need BEX-P to expand quotient 
residues back to mod M(u). Similarly, we need BEX-P to expand 
quotient residues of  E(u) / H(u)  computed mod M(u) / H(u) to 
mod M(u). Such a BEX-P algorithm is described in Section II. 

   
A RPS based new Barrett Algorithm for Polynomials (BA-MPM) 
Given: M(u), G(u), H(u). Let M(u) have n factors.  
In step 2a, first a factors of M(u) give G(u); and in step 4a, first b 
factors of M(u) give H(u). There is no loss in generality. 
Input: Residues of A(u) and B(u), (Ai(u), Bi(u)  (A(u), B(u)) (mod 
Mi(u)), i = 1, ..., n. 
Pre-computational Step: 
Step 0. Compute i(u), i = 1, ..., n, (u) =  G(u)  H(u) / P(u) . 
Computational Steps: 
Step 1. Modulo mult. Xi(u)  Ai(u)  Bi(u), i = 1, …, n. 
Step 2a. Quotient. Quotient residues Di(u), i = a + 1, …, n, from 
residues Xi(u) , i = 1, ..., n, and moduli Gi(u), i = 1, ..., a. 
Step 2b. BEX-P. Use BEX-P on Di(u), i = a + 1, ..., n, to get a 
residues Di(u), i = 1, ..., a.  
Step 3. Modulo mult. Ei(u)  Di(u)  i(u), i = 1, ..., n. 
Step 4a. Quotient. Quotient residues Qi(u), i = b + 1, ..., n, from 
residues Ei(u), i = 1, ..., n, and moduli Hi(u), i = 1, ..., b. 
Step 4b. BEX-P. Use BEX-P on Qi(u), i = b + 1, ..., n, to get b 
residues Qi(u), i = 1, ..., b. 
Step 5. Remainder. Ci(u)  Xi(u) – Qi(u)  Pi(u), i = 1, …, n.  
Provided that L –  > N – 1 (a rather trivial condition at this stage), 
Steps 4b and 5 may also be swapped. In that case, we have: 
Step 5. Remainder. Ci(u)  Xi(u) – Qi(u)  Pi(u), i = b + 1, …, n.  
Step 6. BEX-P. Use BEX-P on residues Ci(u), i = b + 1, ..., n, to get 
b residues Ci(u), i = 1, ..., b. 
 
Example 3. Let the computation be defined in GF(2). Let N = 2P – 1, 
and  =  = N. In this case, deg(M(u)) > 2  N – 2. We choose M(u) = 
(uN – 1)  [(uN+2 – 1) / (u – 1)] with G(u) = H(u) = uN – 1. Also, gcd(ua 
– 1, ub – 1) = ugcd(a, b) – 1. In our case, N and N + 2 are two 
consecutive odd integers, hence gcd(N, N + 2) = 1. Thus, uN – 1 and 
[(uN+2 – 1) / (u – 1)] are co-prime. The factorization of uN – 1 in 
GF(2) using GF(2P) is well-known with each factor having degree P 
or less. Factorization of uN+2 – 1 can be obtained from the 
factorization of uA – 1, A = 22P – 1 as 22P – 1 = (2P – 1)  (2P + 1). 
Consequently, the factorization of uN+2 – 1 in GF(2) using GF(22P) is 
obtained with factors having degree 2  P or less. The computation 
A(u)  B(u) mod P(u) with N = 2P – 1 is performed using arithmetic 
where half the moduli have degree P or less and the other half have 
degree 2  P or less. These techniques can be extended for N such that 
N | (2P – 1). These computations correspond to circular convolutions.  
Example 4. We pursue previous example. Let P = 10, and N =  =  
= 1,023. Thus, N takes a large value. In this case, u1,023 – 1 has factors 
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of degree 10 or less. Similarly, u1,025 – 1 has factors of degree 20 or 
less. Let M(u) = (u1,023 – 1)  [(u1,025 – 1) / (u – 1)] with G(u) = H(u) = 
u1,023 – 1. Here, we assume that deg(A(u)) = deg(B(u)) = N – 1 = 
1,022. If A(u) and B(u) have degree less than 1,022, then we pad 
them with 0’s and treat them as polynomials of degree 1,022. Thus, 
A(u)  B(u) mod P(u), N = 1,023, is computed using arithmetic where 
half the moduli have degree up to 10 and half have degree up to 20. 
Example 5. Consider A(u)  B(u) mod P(u) in the field of real or 
complex numbers. We let G(u) = H(u) = uN – 1 and M(u) = u2N – 1 = 
(uN – 1)  (uN + 1). Let  be the 2  N root of unity. In this case, 
computations use DFT and IDFT via FFT. For instance, X(u) in step 
1 can be computed using a size 2  N DFT. In step 2a, let R(u) denote 
the remainder X(u) mod G(u). Then R(u) is computed as a size N 
IDFT of the even DFT coefficients of X(u). We write  

D(u) = [X(u) – R(u)] / (uN – 1). 
Substituting odd powers of , we get, 

D(2k+1) = –0.5  [X(2k+1) – R(2k+1)], k = 0, ..., N – 1. 
Computation of R(2k+1) is same as a size N DFT of sequence Ri  i, i 
= 0, ..., N – 1. D(2k+1) is same as a size N DFT of sequence Di  i, i 
= 0, ..., N – 1. The computation of D(u) in step 2a is performed by first 
taking size N IDFT of D(2k+1), k = 0, ..., N – 1, obtaining the 
sequence Di  i, i = 0, ..., N – 1, and then constructing Di, i = 0, ..., N 
– 1. The BEX-P in step 2b consists in taking size N DFT of D(u). Step 
4 is similar to step 2. A total of 2 IDFT and 2 DFT, each of size N, are 
needed in steps 2 and 4. Steps 0, 1, 3, and 5 are straightforward.      

V. FURTHER ANALYSIS 

We describe an algorithm for MPE, called BA-MPE, that uses the 
new RPS based BA-MPM. Let BA-MPM that computes C(u) = 
A(u)  B(u) mod P(u) be denoted by BA-MPM(A, B).  

BA-MPE. Here, 1 denotes vector of all 1s. 

Input: Residue vector A(u) for A(u), P(u), and E, . 

Output: Residue vector C(u) for C(u), C(u) = A(u)E mod P(u).  
1. If e0 = 1 C(u)  A(u) else C(u)  1 
2. For j = 1 to k do 
   A(u)  BA-MPM(A, A) 
         If ej = 1 then 
      C(u)  BA-MPM(C, A) 
         end If 
   end For.      

VI. CONCLUSIONS 

In this work, new Barrett algorithms are described for computing 
A(u)  B(u) mod P(u) and A(u)E mod P(u), P(u) being an 
irreducible polynomial of degree N. A residue polynomial system 
based new Barrett algorithm is described that uses only residue 
arithmetic thus avoiding large degree polynomial multiplication 
that may be computationally intensive. All the algorithms as 
described here are a first. The previously known Barrett 
algorithms use powers of u to scale the various computations. 
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APPENDIX: Computing Quotient Residues in RPS 

Problem. Given residues Xi(u) of X(u), Xi(u)  X(u) mod Mi(u), i 

= 1, …, n, M(u) = MI(u)  MII(u), MI(u) =  


a

i

i uM
1

, MII(u) = 

 


n

ai

i uM
1

, gcd(MI(u), MII(u)) = 1, compute residues of quotient 

Q(u) when X(u) is divided by MI(u), deg(Q(u)) < deg(MII(u)).  
We revisit polynomial arithmetic described in Section II and use it 
to get an algorithm for computing residues of Q(u). Consider (1) 
when X(u), A1(u) and R1(u) are known. We compute Q1(u) as 

Q1(u) = (X(u) – R1(u))  A1(u) –1.         (A1) 
When Q1(u), A2(u) and R2(u) are known, we compute Q2(u) as 

Q2(u) = (Q1(u) – R2(u))  A2(u) –1.          (A2) 
This is carried out recursively to finally compute Qa(u) as 

Qa(u) = (Qa – 1(u) – Ra(u))  Aa(u) –1.                  (A3) 
The representation of X(u) in (6) is valid. It is reproduced below:  

X(u) = Qa(u)  [Aa(u)  A1(u)] + [Ra(u)  (Aa–1(u)     
          A1(u)) + … + R2(u)  A1(u) + R1(u)].                (A4) 

We apply the arithmetic in (A1)-(A4) to RPS defined mod M(u). 
Given moduli Mi(u) and residues Xi(u), i = 1, …, n, we set 

Ai(u) = Mi(u).                           (A5) 
Thus, R1(u) = X1(u). This leads to, 

Q1(u) = (X(u) – X1(u))  M1
–1(u)                   (A6) 

Since X(u) is expressed in terms of its residues and M1
–1(u) exists 

only mod Mi(u), i = 2, ..., n, we compute residues of Q1(u) in (A6) 
by taking mod Mi(u), i = 2, ..., n, of both sides. Thus, 

Q1,i(u)  (Xi(u) – X1(u))  M1(u) –1 (mod Mi(u)), i = 2, ..., n.          
As deg(Q1(u)) = deg(X(u)) – deg(M1(u)) < deg(M(u)) – 

deg(M1(u)) , Q1(u) is uniquely expressed by its 

residues Q1,i(u), i = 2, ..., n. After the 1st iteration in (A1), 
R2(u)  Q2(u) (mod M2(u)) = Q1, 2(u).             (A7) 

Expressing (A7) in residue form, we compute residues of Q2(u) 
by taking mod Mi(u), i = 3, ..., n, of both sides. This results in 
        Q2,i(u)  (Q1,i(u) – Q1,2(u))  M2(u) –1 mod Mi(u), i = 3, ..., n.       

Again, deg(Q2(u)) . Thus, Q2(u) is expressed in 

terms of its residues Q2,i(u), i = 3, ..., n.  
This process is iterated a times to compute residues of Qk(u) or 

Qk,i(u), i = k + 1, ..., n, k = 1, ..., a. At the end, (A4) becomes 
X(u) = Qa(u)  (Ma(u)  M1(u)) + [Ra(u)  (Ma – 1  M1(u))  
           + … + R2(u)  M1(u) + R1(u)].      

Thus, Qa(u) is the quotient obtained by dividing X(u) by MI(u) 
expressed in terms of its residues Qa,i(u), i = a + 1, …, n.  
An algorithm to compute quotient polynomials 
Input: RPS defined mod M(u); M(u) = MI(u)  MII(u); residues of 
X(u), Xi(u)  X(u) (mod Mi(u)), i = 1, ..., n. 
Output: Residues of Q(u) mod Mi(u), i = a + 1, …, n, Q(u) being 
quotient when X(u) is divided by MI(u).  
Initialization: 

Q0,i(u) = Xi(u), i = 1, …, n. 
Computational Step: For k = 1, …, a, 

Qk,i(u)  (Qk–1,i(u) – Qk –1,k(u))  Mk(u)–1 (mod Mi(u)),  
i = k + 1, ..., n.                            

Output: Qi(u) = Qa,i(u), i = a + 1, ..., n. 
In general, computations in each iteration can be performed in 
parallel. All the modular inverses can be pre-computed and stored. 
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