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ABSTRACT

The paper presents the results of design explorations for the
implementation of the Smith-Waterman (S-W) algorithm ex-
ecuting DNA and protein sequences alignment. Both design
explorations studies and the corresponding FPGA implemen-
tations are obtained by writing a dynamic dataflow program
implementing the algorithm and by direct high-level synthesis
(HLS) to FPGA HDL. The main feature of the obtained im-
plementation is a low-latency, pipelinable multistage process-
ing element (PE), providing a substantial decrease in the re-
source utilization and an increase in the computation through-
put when compared to state of the art solutions. The imple-
mentation solution is also fully scalable and can be efficiently
reconfigured according to the DNA sequence sizes and to sys-
tem performance requirements. The FPGA design presented
in the paper can efficiently scale up to 250 MHz obtaining
14746 Alignments/s using a single S-W core with 4 PEs, and
up to 31.8 Mega-Alignments/min using 36 S-W cores on the
same FPGA for sequences of 160x100 nucleotides.

1. INTRODUCTION

Sequence alignment is an extensively used operation in bioin-
formatic data processing. Sequences of DNA, RNA, or pro-
teins are aligned to identify regions of similarity that may
be a consequence of functional, structural, or evolutionary
relationships between the sequences. Among others, one
important application is in the field of cancer identification.
Cancer diseases are the results of changes occurred in the
DNA sequence of the cells genomes [1]. These changes (also
called aberrations) can be described as nucleotide substitu-
tions, short insertions and deletions (indels), rearrangements
and copy-number variations. The Smith-Waterman (S-W) al-
gorithm [2] is a generalization of string matching algorithms
that includes the computation of matching scores taking into
account the insertions or deletion of parts of the string. The
S-W algorithm can be used for identifying these aberrations
since it is quite sensitive to identify most complex aberra-
tions which instead result unrecognizable by using alternative
heuristics provided by faster algorithms [3]. The essential
drawback of the S-W algorithm when dealing with large
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MM of École Polytechnique Fédérale de Lausanne, Switzerland.

amounts of genomic data versus reduced search heuristics is
that it is much more demanding in terms of computations.
The S-W algorithm performs local sequence alignment by
executing two separate stages. The first is the computation of
an optimal scoring matrix that presents an algorithmic com-
plexity of O(n × m), where n and m are the lengths of the
two sequences. The second stage is a traceback of the matrix
which has an algorithmic complexity of O(2×max(n,m)).
For the alignment of data yield by a modern sequencing ma-
chine of a single human biological sample, the entire S-W
need to be executed several billion of times. Different im-
plementation approaches have been proposed in literature
to speed-up the entire analysis process. Among them, sys-
tolic arrays (SA) are a particular class of parallel processing
architectures that can guarantee the best performance for
embarrassingly-parallel applications [4]. For this reason,
FPGA S-W implementations [5, 6, 7, 8, 9] generally outper-
form CPU and GPU implementations [10, 11, 12] in terms
of cell updates per second (CUP). However, not all results
appeared in literature provide a complete implementation of
the two S-W stages, in almost all cases they only provide
the evaluation of the scoring matrix leaving the traceback
stage to a secondary processing platform. As consequence,
the data transfer bandwidth between the two platforms might
constitute the bottleneck of the final implementation strongly
reducing the overall system throughput. In this paper the
results of a complete FPGA S-W implementation including
both the two computational stages is presented. The imple-
mentation solution has been obtained by describing the SA
S-W algorithm using an high-level and dynamic dataflow pro-
gram, analysing and exploring the system design space and
successively synthesizing the FPGA solution by using an high
level synthesis (HLS) framework developed by the authors.
The results of the study are very interesting when compared
to state of the art solutions since it is possible to reach 31.8
Mega-Alignments/min for sequences of 160x100 nucleotides
on a single medium size FPGA. The paper is structured as fol-
lows. In Section 2 the S-W algorithm is introduced. Section 3
provides the description of the dataflow implementation that
is successively synthesized using the HLS framework devel-
oped by authors. The results of the implementation are then
discussed in Section 4. Section 5 concludes the papers sum-
marizing the future works addressing an integrated solution
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usable in a complete genome analysis pipeline.

2. SMITH-WATERMAN ALGORITHM

Smith-Waterman algorithm (S-W) performs a local alignment
of two sequences of RNA, DNA or protein. The first string
A = {a1, a2, . . . , an} is generally referred to as the refer-
ence, and the second oneB = {b1, b2, . . . , bm} as the read (or
query). The S-W is composed of two computational stages.

2.1. Scoring matrix evaluation

The first stage consists on arranging the two sequences in a
matrix H ∈ Rm+1,n+1 in which n and m are the sizes of the
two sequences. For each 1 ≤ i ≤ n and 1 ≤ j ≤ m the
values of H are evaluated as:

H[i][j] = max


H[i− 1][j − 1] + s(i, j)

H[i− 1][j] + δ

H[i][j − 1] + δ

0

(1)

where s(i, j) is a similarity function of the alphabet Σ of
the two sequences and δ is the gap cost. The four lines of
Equation (1) can de described as follow: the first represents
a match or mismatch, the second a deletion, the third an in-
sertion. It should be noted that the fourth imposes that the H
matrix can not contain negative values: this fact makes S-W a
local alignment algorithm [2]. Boundaries ofH are generally:

H[0][j] = 0, 0 ≤ j ≤ n
H[i][0] = 0, 0 ≤ i ≤ m (2)

2.2. Traceback Procedure

The second stage is finding the best local alignment between
the two sequences by a traceback procedure along the scoring
matrix. Starting from the highest value of H[i][j], referred
to as score, the matrix is traversed choosing at each time the
neighbor of the current matrix element used to construct the
matrix (i.e. the one that maximizes Equation 1). The trace-
back procedure stops when a zero value is reached.

2.3. Systolic Array Configuration

From Equation (1) it can be seen that the values of each ele-
ment H[i][j] depends only on its left, up and diagonal neigh-
borhoods. As consequence, the evaluation of the entire scor-
ing matrix can be efficiently performed diagonal by diagonal,
since each diagonal depends only on the result of the previous
one. Using a systolic array (SA) configuration [4], a set of n
processing elements (PE) is sufficient to fully parallelize this
computation.Each character ai is assigned to the PEi pro-
cessing element. Conversely, each character bj is assigned to

all the PEs during the j-th execution of each PE. If the evalu-
ation of each elementH[i][j] requires p clock-cycles (CLKs),
then the entire evaluation ofH is performed in p×max(n,m)
CLKs instead of p × n ×m CLKs as required by a non-SA
implementation.

3. DATAFLOW IMPLEMENTATION OF THE S-W
ALGORITHM

A dataflow program can be represented as a directed graph
where each node represents an execution kernel, called actor,
and each directed edge represents a first-in first-out (FIFO)
queue, called buffer. Actors encapsulate their own state which
cannot be shared among the other actors of the graph. Atomic
data objects, called tokens, are stored in each buffer and used
to exchange information among actors: tokens represent the
only possible form of synchronization and data exchange be-
tween actors. The execution and activation of actors are gov-
erned by a given set of rules which is usually referred to as the
program model of computation (MoC). The Dataflow Process
Networks (DPN) [13] is a dynamic MoC frequently used to
specify a wide variety of signal processing applications [14,
15, 16]. Each DPN actor evolves by performing sequences of
discrete computational steps. The standard dataflow program-
ming language [17] called RVC-CAL has been used to imple-
ment the S-W algorithm. RVC-CAL is a dataflow language
which fully captures the behavioral features of DPN model
of computation adding the notion of discrete and atomic fir-
ings. Each firing function is called action. Each firing of an
action is enabled by conditions on the actor internal variables,
on the availability of input tokens and on the actual values of
the tokens. For a complete description of the language the
interested reader can refer to [17, 18]. In the following, two
RVC-CAL dataflow implementations of the SA S-W are re-
ported. The first is referred as static implementation in which
the sequence sizes are known at-priori. The second is a dy-
namic implementation in which the sizes are not know and
can vary from one alignment to another. Since the sequence
sizes are not generally known at-priori, only the synthesis re-
sults of the dynamic configuration are reported in the rest of
the paper.

3.1. Static Implementation

Using the dataflow formalism, the S-W algorithm with a SA
configuration illustrated in Section 2 can be modeled as a
graph of interconnected actors. Fig. 1 depicts a RVC-CAL
static implementation with 4 PEs. As mentioned before, a
static SA configuration can be used only if the sequence sizes
are known at-priori. For this particular example, the refer-
ence can not be longer than 4 nucleotides. However, the de-
sign can be easily extended to support longer sequences by
introducing additional PEs.So as, a S-W RVC-CAL design
with n PEs is composed by n+ 2 actors: n PEs actors, a con-
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troller actor and an aligner actor. Due to the limited space
of this paper, the RVC-CAL source code of the actors can
not be provided. However, their main functionality is sum-
marized in the following. Each PE actor can be seen as the
main component used to evaluate the elements of the scoring
matrix H . Equation (1) is solved each time that this actor is
executed. The result is stored in a local variable and succes-
sively sent to the output port V. It should be noted that the
values of H[i−1][j] and H[j−1][i−1] (i.e. up and diagonal
neighbors, respectively) can be retrieved from the actor inter-
nal state since H[i−1][j] is the value of v and H[j−1][i−1]
the value of the left neighbor obtained from the previous firing
of the action. The actor internal state is reset when an end of
sequence (EOS) character is received. The Controller actor
parses the two input sequences that are then sent to the PEs.
Each aj is sent m + 1 times to each PEj , while each bi is
sent once to each PE. An extra EOS character is added at the
end of each sequence B in order to reset all the PEs internal
states, making possible to immediately start new alignments.
The Aligner actor stores all the scoring matrix element values
computed by the PEs. Furthermore, its computes the best lo-
cal alignment of the two sequences by implementing the S-W
traceback procedure. The score value and the corresponding
matrix indexes are updated each time that a new PE value is
received: this is done to avoid introducing extra latency in the
overall algorithm.

Fig. 1: RVC-CAL dataflow Systolic Array Smith-Waterman
design: static configuration.

3.2. Dynamic Implementation

The static design described above requires to be modified to
support the possibility of aligning sequences with variable
and unknown sizes. The objective is to maintain the same
functionality, but, at the same time, make possible to align
sequences for which the reference string size is n > PEs and
both n and m can vary between two successive alignment.
This result can be obtained by partitioning the scoring matrix
H in cdPEs

n e column sub-matrices, where dxe = min{n ∈
N : n ≥ x} is the ceiling operator. The reference sequence A
is divided in c sub-sequences, each of size PEs such asA1 =
{a1, a2, . . . aPEs}, A2 = {aPEs+1, aPEs+2, . . . a2PEs},
Ax = {axPEs+1, axPEs+2, . . . axPEs}. Each PE is then
executed m × c times. Fig. 2 reports the graph of the S-W

Available Usage
BRAM 3456 94 2.72%

FF 1075200 2468 0.23%
LUT 537600 3056 0.57%

(a) Overall resource utilization

Actor BRAM FF LUT
Aligner 66 1.91% 439 0.04% 591 0.11%

Controller 2 0.06% 220 0.02% 323 0.06%
LeftBuffer 0 - 68 0.01% 107 0.02%

PE1 0 - 188 0.02% 248 0.05%
PE2 0 - 188 0.02% 248 0.05%
PE3 0 - 188 0.02% 248 0.05%
PE4 0 - 188 0.02% 248 0.05%

(b) Resource utilization of each RVC-CAL actor

Table 1: Synthesis result for the dynamic SA S-W dataflow
program depicted in Fig. 2.

dataflow program with a dynamic SA configuration that sup-
ports the possibility of size-varying sequences. Compared to
the static design described above, an additional actor called
LeftBuffer has been added. The actor is responsible of send-
ing to PE1 the scoring values evaluated by PEPEs. This
buffered-stream oriented implementation does not require
that PE1 have to directly access the scoring matrix to retrieve
the sub-matrices border values. In other words, sub-matrices
border values are streamed by a buffer without breaking the
PEs execution pipeline. It should be noted that also the se-
mantic of the Controller actor had to be accordingly modified
to handle the splitting of the reference sequence into multiple
sub-sequences.

Fig. 2: RVC-CAL dataflow Systolic Array Smith-Waterman
design: dynamic configuration.

Design Traceback HLS Max. PEs Freq. (MHz) CUPS
[5] no no 174 324.1 56 ×109

[6] no no 384 66.7 25.6×109

[7] no no 1778 45 80×109

[8] no no 252 55 13.9×109

[9] no yes 398 83 33×106

Dynamic RVC-CAL yes yes 144 250 36×109

Static RVC-CAL no yes 1200 250 300×109

Table 2: Design performance in terms of GCUPS compared
to other state of the art implementations.

4. EXPERIMENTAL RESULTS

The RVC-CAL dynamic S-W SA algorithm illustrated in
Fig. 2 has been synthesized in a Virtex Ultrascale (xcvu095)
FPGA. The Xronos HLS framework [19, 20, 21] has been
used to generate a synthesizable HDL code of the dataflow
program consisting of a single dynamic SA S-W core con-
taining 4 PEs, as the one depicted in Fig. 2. Among others
possible designs employing more PEs, such configuration has
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been found to be the best trade-off between FPGA resource
utilization and final throughput. In fact, with a complete
implementation of the S-W such as the one described here,
increasing the number of PEs can accelerate the evaluation
of the scoring matrix H , but the system bottleneck becomes
the aligner which can sensibly reduce the overall throughput
(i.e. see [22, 23]). Consequently, the design choice has been
to evaluate the best trade-off between resource utilization of a
single S-W core (i.e. a single implementation of the dataflow
network depicted in Fig. 2) and the number of parallel S-W
cores that can be placed in a single FPGA. The direction
matrix has been stored together with the scoring matrix H
to make possible the evaluation of the traceback procedure.
Each matrix elementH[i][j] has been stored in 16 bits: 13 bits
are reserved for the scoring value, 2 bits are used to store the
direction, and 1 bit is used to mark a perfect match between
aj and bi. The maximum nucleotides sequence size for both
the reference and the read string supported by the described
design has been set to 256. Such choice is motivated by the
decision of storing the matrix directly on the FPGA, without
using an external DDR which would have implied to reduce
the overall throughput in terms of Alignments/s. It should be
observed that this is only a dataflow program configuration
parameter that could be easily modified before HDL synthe-
sis to support longer sequence sizes. Finally, the synthesized
implementation has been validated by a post-synthesis RTL
behavioral simulation. Resource utilization of a single S-
W core with 4 PEs synthesized with a clock frequency of
250MHz are summarized in Table 2. The set of nucleotides
sequences have been encoded using 3 bits for each character,
using as alphabet Σ = {A,C,G, T,−, EOS}, where − and
EOS are two special characters. The first is used for mark-
ing an unknown nucleotide in the reference/read sequence
or an indel (insertion/deletion), the second is used to divide
two nucleotide sequences when streamed to/from the board.
Using this design solution, is has been possible to achieve
the result of 14746 Alignments/s for a set of standard se-
quences of 160x100 nucleotides. According to Table 2, the
maximal number of S-W cores that could be placed in the se-
lected FPGA platform is 36 cores with 4 PEs each. With such
implementation, it is possible to achieve a peak of 31.8 Mega-
Alignments/min. In literature, when dealing with the SA S-W
FPGA implementation, the general trend is to provide a solu-
tion only for the first stage of the S-W algorithm, completely
neglecting the traceback procedure. The scoring matrix is
sent through IO interfaces to an external platform (generally
a CPU or a GPU). However, for long nucleotide sequences,
this approach can compromise the overall throughput per-
formance given that the IO interface bandwidth can easily
become the system bottleneck. Thus, the paper provides a
solution including both the two S-W stages (i.e. scoring ma-
trix evaluation and traceback as described in Section 2). For
this reason, the comparison with other state-of-art implemen-
tations has been done in terms of cell updates per second

(CUPS). CUPS are a performance measure commonly used
in computational biology that represents the time for a com-
plete computation of one element of the scoring matrix H
(see Equation (1)). CUPS performance can be measured as
CUPS = f × PEs, where f is the clock frequency of the
design. Table 2 compares the performance in terms of CUPS
of some state-of-art implementations with the one reported in
the paper (denoted as RVC-CAL). As it can be seen, only the
one implemented in this paper implements the S-W traceback
procedure. In this case, the inputs of the system are the two
unaligned sequences (i.e. the reference and the read) and the
outputs are the two aligned sequences and the highest score
value of H . Results for two different configurations of the
RVC-CAL SA S-W design are reported in Table 2: the first
is the dynamic SA S-W with 36 cores with 4 PEs each, and
the second is the dynamic SA S-W with 1 core containing
1200 PEs. With these two configurations, it is possible to
achieve 36 GCUPS and 300 GCUPS respectively. However,
as mentioned before when augmenting the number od PEs in
a single S-W core the bottleneck becomes the aligner. As a
consequence, the throughput in terms of Alignment/s of the
first configuration is 31.8 Mega-Alignments/min, conversely
with the second is around 1500 Alignments/s which is very
similar to the throughput of a single S-W core with 4 PEs.

5. CONCLUSION

A complete FPGA SA S-W design obtained by describing
the algorithm with an high-level dataflow representation and
then by directly synthesizing the FPGA implementation is
reported. The dataflow program has been analyzed, system
design options have been explored and the final solution
synthesized by using an HLS framework developed by the
authors. Results of the final implementation outperform
state of the art solutions since it is possible to achieve 31.8
Mega-Alignments/min for standard sequences of 160x100
nucleotide. Moreover, the current design provides a com-
plete implementation of both the two stages composing the
S-W algorithm: the evaluation of the score matrix and the
traceback procedure. The output of the design are the aligned
sequences, not only the score matrix as usually provided in
literature. The main benefit of the new design solution is
the possibility of integrating into a single FPGA chip the
entire alignment process, without dealing with IO interface
bandwidth limitations faced by implementation in which the
traceback procedure is performed by an external platform
(generally CPU or GPU). Further work will focus on inte-
grating the S-W cores with the IO interfaces to provide a final
on-chip implementation. An IO bandwidth that guarantees a
throughput of 31.8 Mega-Alignments/min can be estimated
at about 0.39 Gb/s using 3 bits for representing each base
or 1.03 Gb/s using 8 bits for representing each nucleotide
base, solution which may lead to consider higher end FPGA
platforms supporting even much higher throughput for the
final system designs.
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