MULTICORE DISTRIBUTED DICTIONARY LEARNING: A MICROARRAY GENE
EXPRESSION BICLUSTERING CASE STUDY

Stephen Laide, John McAllister

Institute of Electronics, Communications and Information Technology (ECIT),
Queens University Belfast, UK

ABSTRACT

The increasing pervasion and scale of machine learning tech-
nologies is posing fundamental challenges for their realisa-
tion. In the main, current algorithms are centralised, with a
large number of processing agents, distributed across parallel
processing resources, accessing a single, very large data ob-
ject. This creates bottlenecks as a result of limited memory
access rates. Distributed learning has the potential to resolve
this problem by employing networks of co-operating agents
each operating on subsets of the data, but as yet their suitabil-
ity for realisation on parallel architectures such as multicore
are unknown. This paper presents the results of a case study
deploying distributed dictionary learning for microarray gene
expression bi-clustering on a 16-core Epiphany multicore. It
shows that distributed learning approaches can enable near-
linear speed-up with the number of processing resources and,
via the use of DMA-based communication, a 50% increase in
throughput can be enabled.

Index Terms— Multicore, Machine Learning, Dis-
tributed, Biclustering, Microarray Gene Expression

1. INTRODUCTION

Machine learning (ML) and artificial intelligence technolo-
gies increasingly pervade intelligent computing systems. As
the amount of data these process increases, traditional ML
algorithms, which require access to the entire dataset at all
times, quickly and increasingly encounter the memory wall
- fundamental limits on throughput and latency imposed by
multiple parallel processing elements attempting to access
a single, centralized data resource concurrently [1]. As the
scale of ML problems, algorithms and processing technolo-
gies increases, it is imperative that they do so in a way that
leads to high performance on parallel processing platforms.
Distributed learning algorithms forego global visibil-
ity, undertaking learning via a network of locally-connected
agents, each of which has visibility of only a subset of the
data [2, 3]. This approach appears highly promising with
respect to the highly-parallel multicore [4, 6, 7], Graphics
Processing Unit (GPU) and Field Programmable Gate Ar-
ray (FPGA) platforms which are emerging to power these

978-1-5090-4117-6/17/$31.00 ©2017 IEEE

1168

systems. However, to the best of the authors’ knowledge,
there has been no experimental study of distributed ML on
multicore platforms.

This paper studies deployments of a sample ML work-
load - dictionary learning [5] for microarray gene expression
bi-clustering - on a highly parallel processing platform. This
case study is taken from [3]. The algorithm realised is both
decentralised and online, in that the network is exposed to
successive input samples in turn, in a streaming manner.
Specifically, the following contributions are made:

1. A realisation of distributed dictioinary learning for
micorarray gene expression bi-clustering on 16-core
Epiphany-III multicore is presented.

2. Itis shown how, via batch processing of input samples,
near-linear speedup of throughput with the number of
processing resources can be achieved.

3. It is shown how, by selective employment of Di-
rect Memory Access (DMA) as compared to sim-
ple nearest-neighbour point-to-point communication,
throughput increases of almost 50% may be achieved.

2. BACKGROUND & CONTEXT

Realising global dictionary learning using a network of N
agents means resolving:

min [f (%t = Wye) + hy (y7)] + hw (W)
s.t. Wew

(D

Each node k will possess a subset Wy, of the full dictio-
nary W. Each input sample x; is received by a subset of the
network, with each agent calculating an optimal sub-vector of
the coefficients y%t relative to its own sub-dictionary. In [3] it
is shown how distributed dictionary learning successfully ap-
proximates the classification of microarray gene expression
data for the detection of lung cancer [8]. Specifically, for 56
test subjects each providing 12,625 gene expression levels a
data matrix X € R56*12:625 may be decomposed according
to:

ICASSP 2017

N
X =) wiyl)
k=1

Where wy, € R%*! and y;, € R!2:625%1 Each wy, repre-
sents a column, or an atom of the dictionary W and it is shown
how the bi-clustering problem can be suitably resolved using
N = 3,ie. W € R%*3, It does so by employing distributed
dictionary learning with two distinct operating phases, illus-
trated in Fig. 1:

e Sparse Coding/Inference: sparse approximation of
the input data using the existing dictionary

o Dictionary Update: gradient-descent based dictionary
update

Inference

Fig. 1: Distributed Dictionary Learning

As shown, the learning prcess is undertaken by a network
of agents, each of which estimates sub-components of y and
W and which share error information, specifically an error
vector vy, via diffusion to allow the network to converge to
a consensus on the optimal value of the error. In this case,
each component wj, of W is a single column. Once the op-
timal error is identified, each agent uses its local estimates
of v and y to update its own dictionary via gradient descent
with respect to its own dictionary. For each data sample the
inference is iterated a number of times to ensure that the er-
ror converges toward a global minimum, with error estimates
exchanged between nodes once per iteration, equating to mul-
tiple exchanges per data sample. Dictionary update only oc-
curs once per data sample. In this case, the number of nodes
N = 3 and full network connectivity is assumed. The algo-
rithm operates as outlined in Algorithm 1.

It is assumed that vy = 05! and w randomly initialised
and projected onto the valid solution space using?:

1[X]. .l <1

[X];nv
[Hm]' :{m" x>t @

Wi X 112

I'Where k,, denotes an n-element vector, each element of which takes
value k
2The notation [A], ,, refers to column n of matrix A

where, in this case

We={w:(weR**Nn(lw||<1)} 4)

Over 2000 iterations, the error vector is derived (lines 2 -
4), with the values of y determined (line 6) according to the
soft thresholding operator

7o)], = (|[x],,| —) +sgn ([x],,) (5)

Throughout, y, = 0.01, uw = 5 x 1073, § = 0.01,
v =05, =001and A = ﬁlleTv- Note specifically
the two phases of operation: multi-iteration inference (lines
2-4), which includes update of the error vector according to
that experienced by the other nodes in the network and the
dictionary update (line 7).

Algorithm 1 Node Infer-Update Program

1: procedure INFER-UPDATE(X;, Vo, W¢)
2: for i < {1,...,2000} do

Vi Vi1 — pv— (Vi1 — X¢)

3: N
— /%72 (Wi vie1) Wit
4: Vi & > ant
5: V< V;
6: y %7:, (Wi_,v)
7 Wi [jwy<a {75 (Wem1 + pwvy™) }

3. DISTRIBUTION

3.1. Distributed Implementation

In this paper, we analyse the performance of the distributed
learning approach on the Adapteva Parallela III Microserver
[9]. The architecture of this platform is illustrated in Fig. 2.
The Parallela consists of a host Dual-Core ARM A9 and a
16-core Epiphany III many-core coprocessor [10] commu-
nicating via an AXI interconnect and 32 MB DRAM mem-
ory, which is the only external communication point with the
Epiphany. The structure of each element of the Epiphany is
shown in Fig. 2b.

Each Epiphany node or eCore consists of a superscalar
RISC CPU, 32 KB of local scratchpad memory, an interface
to the eMesh on-chip communications network and a DMA
engine. Inter-core communication can be via one of two
mechanisms: the DMA, or direct load/store interface to the
memory space of each eCores neighbours to the north, south,
east and west [11].

A number of aspects of the eCore are notable. Firstly,
the amount of local memory is highly limited, meaning that
highly localised learning is required if ML on large data ob-
jects is to be achieved without saturating the shared RAM
resource. Secondly, a series of compromises have been made

1169

eCore

32KB RAM

Dual Core
ARM A9

DMA Engine

Network Interface

Epiphany

(a) Parallela

(b) Element Structure

Fig. 2: Multicore Architecture

in the design of the eCore which may influence its com-
putational performance, specifically, the absence of native
floating-point divider components, with division instead em-
ulated in software.

The distributed implementation separates the dictionary
W into three atoms, one per column, with the learning pro-
cess associated with each atom undertaken by a single eCore.
The workgroup is composed of four eCores, a single master
node used to handle the streaming of input data to each of
the agents, of which there are multiple referred to as the net-
work. This arrangement is illustrated in Fig. 3, with master
and network nodes denoted by M and N respectively.

The distributed implementation operates as follows:

o Initialisation: The master node draws x; from shared
DRAM, all network nodes initialise their local w and v
vectors, and enter a low-power standby state until wo-
ken by the master.

e Input: Once all network nodes have initialised, the
master writes x; to the local memory of each network
node and awakes each.

o Iteration/Update: The network nodes perform infer-
ence, iterating their local error vectors v and trans-
ferring these with their neighbours until convergence.
Once complete, dictionary update is undertaken. Si-
multaneously the master node loads the next input and
enters an idle state awaiting the network to complete.

e Termination: Once all network nodes have completed,
they notify the master and enter a low-power state
awaiting the next input sample from the master.

Hence the streaming implementation performs a single
iteration of initialisation, followed by a potentially infinite
number of iterations of Input-Iteration-Termination.

Shared DRAM |
* 5
=
B :
2
z
} S

Initialised

| Shared DRAM |
S
N1 N2 N3 K

input sample

| Shared DRAM | =
2
2
2
c
o
o
fo'}
@

| Shared DRAM |
_|
®
3
>
N2 N3 M 2
o
L Le r °

Fig. 3: Distributed Operation Data Exchange

3.2. Batch Operation

The batch-distributed realisation builds on the distributed ver-
sion, executing the estimation steps for multiple input sam-
ples concurrently. In this case the dictionary is again sub-
divided into three atoms but multiple input samples are pro-
cessed in batch mode. In this case, a (4, 3) workgroup is used,
with element (7, j) hosting atom w. Specifically - each row
of the workgroup processes atoms from a single sub-group as
previously (Fig. 3), but in this case four rows are used to con-
currently realise four iterations. This requires local variables
to be be exchanged down the columns of the workgroup as
the iterations proceed (Fig. 4).

3.3. Performance & Cost

The execution times and throughput for the distributed and
batch realisations are illustrated in Fig. 5. As shown, the dis-
tributed implementation obtains a throughput of 8.31 Sam-
ples/s, with the batch realisation obtaining approximately 20

1170

| Shared DRAM |

[
o
]
< N2,2 [N2,3
[v)
x
¢
£
N4,2 N4,3

Fig. 4: Batch Operation Data Exchange

Samples/s. It is worth recalling that, in fact, each sample rep-
resents 2000 sparse approximation iterations, each processing
56-element vectors during inference and that actual process-
ing rates may be more accurately represented as 8.96 x 10°
and 2.24 x 10° Iterations/second.

Distributed

Batch

0.00 0.60 1.20 1.80 2.40
Throughput (Mlterations/s)

Fig. 5: Parallela Performance Metrics

Whilst the processing rates are substantial, the scaling of
performance with the number of processors is somewhat un-
derwhelming - specifically, despite increasing the number of
processors by a factor four between the distributed and batch
realisations, performance only scales by a factor of 2.4. This
is likely due to the extra communication overhead associ-
ated with invoking inter-processor communication across iter-
ations, as well as within each. Section 4 investigates the effect
of alternative communication approaches on this scalability.

4. COMMUNICATION OPTIMISATION

As outlined in Section 3, the Epiphany supports two methods
of communication between eCores - an eCore can directly ac-
cess the memory of its adjacent north, south, east and west us-
ing load-store instructions; alternatively, DMA transfer over
the eMesh is enabled. It is reported [11] that, for message
sizes below 600 bytes, that direct on-chip write incurs a lower
latency than DMA, due to initialisation and setup overhead
associated with the DMA engines. Note that the transfers be-
tween eCores in this application are below this threshold: the
inputs transferred from the master to each network node are
56-element floating-point vectors (224 bytes), with similar-
sized objects transferred between each pair of network nodes

1171

for error propagation. Despite this, the impact on real-time
performance as a result of employing either is variable, as il-
lustrated in Fig. 6.

Ml Point-to-Point

Distributed
Batch

0.00 1.00 2.00 3.00 4.00
Throughput (Mlterations/s)

Fig. 6: Communication Performance Metrics

As shown, the distributed realisation experiences a marginally

reduced performance when DMA is employed for inter-eCore
communication, with throughput reduced by around 1.8% in
the case where DMA is employed. However, the batch real-
isation experiences a considerable increase in performance -
47.6% - when DMA is employed rather than point-to-point
communication. The throughput on employing DMA stands
at 29.54 Samples/s (3.31 x 106 Iterations/s). It is noticeable
that when DMA is employed for four distributed workgroups
in the batch realisation, peak throughput is increased by a fac-
tor of 3.6 relative to a single distributed workgroup. It appears
that DM A-based communication offers superior performance
scalability than point-to-point in applications of this scale.

5. CONCLUSION

As machine learning and the data sets upon which they op-
erate increase in scale, so ever-higher performing realisations
will be required for real-time data processing. The highly par-
allel processing architectures which will enable these, how-
ever, have to work under memory access-rate and communi-
cation constraints which mean that not all parts of the ML al-
gorithms have visibility of the entire dataset. Distributed ML
approaches mitigate against the impact of these constraints,
but are largely currently of theoretical interest.

This paper benchmarks the performance, scalability and
suitability of the Adapteva Epiphany, a combination of 16
lightweight superscalar processors, when realising a dis-
tributed dictionary learning problem. It shows that, by em-
ploying a distributed realisation of the learning algorithm for
each input sample and processing inputs in batches, perfor-
mance scales near-linearly with the number of workgroups
employed and that, by employ DMA-based rather than direct
point-to-point communication between neighbours, through-
put may be increased by almost 50%. This work can act as a
benchmark against which other efforts in the emerging area
of multicore distributed learning evolve.

6. REFERENCES

[1] H. Yu, Y. Wang, S. Chen, W. Fei, C. Weng, J. Zhao,
and Z. Wei, “Energy Efficient In-Memory Machine
Learning for Data Intensive Image-processing by Non-
Volatile Domain-Wall Memory,” in 2014 19th Asia
and South Pacific Design Automation Conference (ASP-
DAC), Jan 2014, pp. 191-196.

[2] A. H. Sayed, “Adaptive networks,” Proceedings of the
IEEE, vol. 102, no. 4, pp. 460-497, April 2014.

[3] J. Chen, Z. J. Towfic, and A. H. Sayed, “Dictionary
Learning Over Distributed Models,” IEEE Transactions
on Signal Processing, vol. 63, no. 4, pp. 1001-1016, Feb
2015.

[4] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wil-
son, J. Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain,
V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, and
S. Borkar, “An 80-Tile Sub-100-W TeraFLOPS Pro-
cessor in 65-nm CMOS,” IEEE Journal of Solid-State
Circuits, vol. 43, no. 1, pp. 29—-41, Jan 2008.

[5] I Tosic and P. Frossard, “Dictionary Learning,” IEEE
Signal Processing Magazine, vol. 28, no. 2, pp. 27-38,
March 2011.

[6] F. D.Igual, M. Ali, A. Friedmann, E. Stotzer, T. Wentz,
and R. A. van de Geijn, “Unleashing the High Perfor-
mance and Low Power of Multi-core DSPs for General-
Purpose HPC,” in High Performance Computing, Net-
working, Storage and Analysis (SC), 2012 International
Conference for, Nov 2012, pp. 1-11.

[71 S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce,
V. Leung, J. MacKay, M. Reif, L. Bao, J. Brown,
M. Mattina, C. C. Miao, C. Ramey, D. Wentzlaff,
W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Mon-
tenegro, J. Stickney, and J. Zook, “TILE64 - Processor:
A 64-Core SoC with Mesh Interconnect,” in 2008 IEEE
International Solid-State Circuits Conference - Digest
of Technical Papers, Feb 2008, pp. 88-598.

[8] Mihee Lee, Haipeng Shen, Jianhua Z. Huang, and J. S.
Marron, “Biclustering via Sparse Singular Value De-

composition,” Biometrics, vol. 66, no. 4, pp. 1087—
1095, 2010.

[9] Parallela 1.x Reference Manual, 2013.
[10] Adapteva, Inc., Epiphany Architecture Reference, 2013.

[11] A. Varghese, B. Edwards, G. Mitra, and A. P. Ren-
dell, “Programming the Adapteva Epiphany 64-core
Network-on-chip Coprocessor,” in Parallel Distributed
Processing Symposium Workshops (IPDPSW), 2014
IEEE International, May 2014, pp. 984-992.

1172

