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Abstract—High Efficiency Video Coding (HEVC) is one of the
latest released video standards and offers up to 40% bitrate
savings when compared to the widespread H.264/AVC standard,
at the cost of a substantial complexity growth. Constraining the
complexity of HEVC encoding is a challenging task for embedded
applications based on a software encoder. In the last few years,
the Internet of Thingss (IoTs) has become a reality. Forecoming
applications are likely to boost mobile video demand to an
unprecedented level. In this context, designing energy-efficient
HEVC real-time encoders is becoming a major challenge for
software and hardware designers.

In this paper, an analysis is conducted of the energy reduction
opportunities offered by an HEVC encoder. The energy reduc-
tion search space is demonstrated, and the impact on energy
consumption of encoding tools at various levels of granularity is
measured.

Index Terms—Energy consumption, HEVC, real-time encoder,
embedded platforms.

I. INTRODUCTION

Nowadays, numerous embedded application embed video
coding. The High Efficiency Video Coding (HEVC) [1]–[3]
standard represents the state-of-the-art in video coding. When
compared with the previous MPEG AVC, HEVC Main profile
reduces the bit rate by 40% on average for a similar objective
image quality [4], [5]. Such a gain reduces the energy needed
for transmitting video. On the other hand, the computational
complexity of the encoders is significantly increased. This
additional complexity brought by HEVC is mostly due to the
new Coding Tree Unit (CTU) quad-tree block partitioning
structure, which exponentially increases the exhaustive Rate-
Distortion (RD) search process. In the All Intra (AI) coding
configuration, HEVC uses a total of 35 intra-predictions modes
including planar, DC, and 33 angular modes [3]. Moreover,
in Random Access (RA) and Low Delay (LD) configurations
modes, inter prediction supports symmetric and asymmetric
partitioning in Prediction Unit (PU) that generate 8 splitting
modes [2]. The Rate-Distortion Optimization (RDO) adds even
more complexity with an exhaustive search over all Intra
prediction modes and Inter splitting modes in the quad-tree.

The main limitation of the evolution of embedded systems,
particularly in terms of computational performance, comes
from the bounded energy density of batteries. This limitation
is a major constraint of image and video applications, video
encoding and decoding being some of the most energy-
consuming algorithms on smart phones. A large share of
systems are likely to integrate an HEVC codec in the long
run and will require to be energy aware. Power consump-

tion constraints represent a serious challenge for embedded
HEVC real-time encoder design. For embedded applications,
hardware solutions [6] exist that consume low energy. As for
software, there exist several open-source HEVC encoders [7]–
[10] including the HEVC reference software model (HEVC test
Model (HM)). This latter is open source and widely used, as
it achieves the best coding efficiency (in terms of RD) at the
cost of a high computational complexity. The x265, f265 and
Kvaazar HEVC software encoders provide real-time encoding,
leveraging parallel processing and low-level Single Instruction
Multiple Data (SIMD) optimizations. Hardware and software
based encoders can benefits from the complexity reduction
techniques detailed in Section II. The major part of the HEVC
complexity analysis available in literature are based on HM
[4], [11]–[13] but their results can not be directly extended to
real-time video encoders. Only a few studies are specifically
focused on energy consumption [12], [13]. In this paper we
propose to analyse energy reduction opportunities by consider-
ing different levels of granularity from global video parameters
to prediction unit determination. The term search space is
used in this paper as the set of all possible configurations
offering different trade-offs between application performance
and energy. The search space is defined in terms of energy
reduction for complexity reduction methods at different levels
of granularity. In the context of software video encoding on
embedded systems, where computational resources are scarce;
experimental studies are carried out with the real time HEVC
encoder Kvazaar [14]–[16]. The aim of this work is to study
energy consumption and RD degradation in a real-time HEVC
encoder when constraining the encoding at different levels of
granularity. We introduce the notion of Minimal Energy Points
(MEPs) which represent the boundaries of energy consumption
for a given configuration.

The rest of this paper is organized as follows. Section II
presents an overview of State-of-the-Art methods to reduce
the encoder computational complexity. Section III details the
experimental setup and a coarse-grain energy consumption
analysis. Section IV defines the MEP and the energy reduction
search space for complexity reduction techniques.

II. RELATED WORKS

Different levels of parameters can be adjusted to reduce the
complexity of an encoding process. The parameters with the
highest level of granularity are the video parameters such as its
resolution and its frame rate. On the second level, there is the
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Profile level which corresponds to the temporal configuration:
AI frames, RA or LD inter frames. Then come the encoder pa-
rameters, such as the Quantization Parameter (QP) parameter,
that also has a significant impact on complexity. Finally, most
methods reducing the encoder computational complexity focus
on the definition of a new frame partitioning, especially the
coding trees and PU determinations as summarized in Table I.

A. Coding Tree Unit Level Complexity Reduction Methods

To reduce the computational complexity of HEVC encoders,
algorithmic solutions have been proposed to speedup coding
tree partitioning by testing less partition configurations. A fast
splitting and pruning method for intra-encoding is proposed
in [17]. This method is composed of two complementary
techniques using Bayes decision rules: the early Coding Unit
(CU) splitting decision and the early CU pruning decision. The
experimental results show that this method is able to reduce
computational complexity by 50% with a Bjøntegaard Delta
Bit Rate (BD-BR) increase of 0.6%. In [18], a fast CU decision
method is proposed by an early determination of the CU
sizes based on coding tree pruning which yields a complexity
reduction of 40% with a 0.52% increase of BD-BR.

Authors in [19] introduce two novel techniques for fast RDO
process: Top Skip and Early Termination. The Top Skip selects
a starting Coding Tree Block (CTB) depth corresponding to a
given level of CU splitting. The Early Termination method
is used to stop the CU splitting process if the best RD-
cost is already lower than a given threshold. The techniques
are developed on inter predictions and obtain an average of
saving time around 45% for a BD-BR increase of 1.9%. The
methods proposed in [20]–[22] use intermediate information
of encoding steps to determine whether the current CU needs
to be partitioned or can be completely encoded.

B. Prediction Level Complexity Reduction Methods

Different methods have been proposed to reduce the com-
putational complexity of the prediction part of the encoder.

In [23], a fast Intra mode decision algorithm based on
pixel gradient statistics and mode refinement is proposed. This
method achieves about 28% of complexity reduction with a
0.53% BD-BR increase. Authors in [24] propose a method
using texture variance to predict efficiently the PU maps and
to avoid evaluating recursive PU sizes. This method reduces
the complexity by 44% for a BD-BR increase of 1.27%.

[25] reduces the candidates in RDO process using direction
information of the neighbouring blocks. Experimental results
show that this method provides 28% of complexity reduction
for a 0.49% BD-BR increase.

Work in [26] shows a strong correlations of the prediction
mode, motion vector and RD-cost between different tree depth
levels. This correlation is used to early select SKIP mode.
This method reduces the complexity by 52% for a 0.88%
BD-BR increase. In [27] a gradient based Intra mode decision
algorithm is proposed. This method reduces the number of
candidate modes in the RDO process and reduces the com-
plexity by 20% for a 0.74% BD-BR increase. In [28], authors

TABLE I
COMPUTATIONAL COMPLEXITY REDUCTION TECHNIQUES FOR HEVC

Category Brief Desciption Ref CR (%) BD-rate

Coding Tree
Structure
Determination

Fast splitting and
pruning method [17] 50% +0.6%

Coding tree pruning [18] 40% +0.52%
Top Skip and
Early Termination [19] 45% +1.9%

Early Termination [20] 48% +1.7%
Early Termination [21] 35% +0.25%
Early Termination [22] 38% +1.68%

PU
Determination

Pixel gradient statistics [23] 28% 0.53%
PU map prediction [24] 44% +1.27%
Intra mode prediction [25] 28% +0.49%
Correlation [26] 52% 0.88%
Gradient information [27] 20% 0.74%
Skip motion estimation [28] 48% 2.9%
Mode sorting [29] 29.3% 0.78%

explore the relationship between the impossible modes and
the distribution of the distortions to help choosing the units to
skip. The method reduces computational complexity by about
48% with a 2.9% BD-BR increase. Authors in [29] propose
a fast HEVC mode decision algorithm which uses information
of training frames to sort and restrict the tested prediction
modes. Experimental results show that this method reduces
the complexity by 29.3% for an average of 0.78% BD-BR
loss.

Given the amount of complexity reduction methods and the
limited knowledge of their impact on energy consumption and
bitrate, this paper intends to evaluate the energy sparing op-
portunities offered by different complexity reduction methods.

III. VIDEO AND ENCODER PARAMETER EFFECT

This Section presents an experimental characterization and
evaluation of the energy consumption in a real-time HEVC
encoder. A hierarchical approach is applied in this work to
highlight parameters of different levels of granularity, from
the levels with the most impact on energy consumption, i.e.
the global parameters of the encoder, to the levels with lower
impact, such as the prediction techniques of Intra modes.
A. Experimental Setup

To conduct the experiments, 22 video sequences [30] that
differ broadly from one another in terms of frame rate, bit
depth, motion, texture and spatial resolution were used.

All tests were performed on one core of the embedded
EmETXe-i87M0 platform from Arbor Technologies based on
an Intel Core i5-4402E processor at 1.6 GHz. The studied
HEVC software encoder is Kvazaar and AI configuration is
used as a basis for all test configurations.

To measure the energy of the platform, a National Instru-
ment (NI) PXI-6280 external data acquisition board is used.
The power is evaluated by measuring the current drawn by the
board through a shunt 0.1Ω resistor added for this purpose and
by knowing the power voltage of the platform. Intel Running
Average Power Limit (RAPL) interfaces are also used to get
the energy of the CPU package, which includes cores, IOs,
DRAM and integrated graphic chipset.

As shown in [31], RAPL power measurements are coherent
with external measure and [32] proves the reliability of this
internal measure across various applications. In this work, only

1159



Fig. 1. Normalized energy according to resolutions and configurations

the power gap between IDLE state and video encoding is
measured. The CPU is considered to be in IDLE state when
it spends more than 90% of its time in the C7 C-states mode.

The power of the board is measured to 16.7W when the CPU
is in idle mode and goes up to 31W during video encoding in
average. RAPL shows that 72% of this gap is due to the CPU
package, the rest of the power going to the external memory,
the voltage regulators and other elements of the board.

The proposed study does not take into account the Profile
level. There is a significant energy consumption gap between
the different profiles of frame encoding. Indeed, RA or LD
profiles consume 2 to 8 times more energy than the AI profile.
This paper being focused on low energy real-time encoding,
the analysis is conducted on the lowest energy AI profile.

B. Coarse-grain energy consumption analysis

Video encoders and especially HEVC encoders, include a
large number of configurations and tools, each one having
different impacts on energy consumption. This section studies
the impact of the input video stream properties and the coarse-
grain features of the encoder.

a) Resolution and frame rate level: First of all, the
resolution of a video is what holds the most impact on
the energy consumption of its encoding. The upper part of
Figure 1 shows the normalized energy consumption average
versus video resolution (2K, 1080p, 720p, 480p, 240p) for
100 frames. Encoding the 1080p video sequence consumes in
average 2592 Joules, which is used to normalized the results.
The energy consumption of HEVC encodings increases linearly
with the number of pixels by frame. Since the stability of the
energy-per-pixel is stable, the frame rate becomes a significant
parameter to reduce the energy consumption. For example, for
two videos, with one having two times the resolution of the
other and half the frame rate, the energy consumption will be
approximately the same. Videos of class E (720p(E)) are a
special case and do not follow the linear consumption since
their content have specific properties such as a fix background.

b) Encoder parameter level: The first HEVC-specific
parameter level being used to reduce the energy consumption
is based on three independent processes of the Intra prediction:
the Filters (sample adaptive offset + deblocking filter), the
Transform skipping test and the Rate-Distortion Optimisation
Quantization (RDOQ). Four configurations are derived from

TABLE II
ENCODER PARAMETER CONFIGURATIONS

Configuration
Tool C1 R C2 C3
Filters (SAO+DF) D E E E
Transform skipping D D E D
RDOQ D D D E

D: Disable, E: Enable
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Fig. 2. QP impacts according to resolutions

these parameters due to their significant impact on the energy
consumption, as show in Table II. The baseline configuration
is defined as R and the three others by C1, C2 and C3. The
lower part of Figure 1 shows the average normalized energy
consumption of all configurations for the 1080p resolution.
On the vertical axis, the average BD-BRs are computed for
four values of QP (22, 27, 32, 37). The BD-BR and the
energy consumption, which is the result of the sum of the
energies for the four QP, are normalized by the R config-
uration. In HEVC encoders, the tools increasing the energy
consumption improve significantly the RD performance and
thus the BD-BR. Figure 1 shows that the Transform Skip
tool (C2) is not relevant in a real-time application due to
its bad BD-BR/energy consumption trade off (the complexity
increases without significant quality improvement).

c) QP level: Figure 2 plots the average energy consump-
tion (normalized by QP32) as a function of QP when the R
configuration is used for encoding. Figure 2 shows that the
energy consumption decreases as QP increases. This is because
an encoding with higher QP quantizes data more aggressively,
leading to a larger share of null coefficients after quantization
and the RDO process is stopped sooner. This leads to faster
encoding, and in turns less energy spent.

As a first conclusion, the coarse-grain analysis performed
in a hierarchical approach shows that the energy consumption
of a video encoding is linearly impacted by the resolution of
the input video and differently impacted by high level HEVC
features. In the next section, we analyse the energetic impact
of lower granularity parameters. These parameters are driven
by the RDO process and can significantly reduce complexity,
as shown in Section II. We also define the MEP which bounds
the energy reduction search space.

IV. ENERGETIC IMPACT OF THE RDO

Complexity reduction techniques aim to improve the selec-
tion of the best configurations in the HEVC encoder in order
to lower the energy consumption while trying to limit the
deterioration of the rate distortion performance.

A. Determination of the Minimal Energy Point (MEP)

The RDO selects CTU partitioning and prediction mode
which lead to the minimal RD-cost. Depending on the entropy
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of the encoded block, different sizes of CTUs are suitable.
The RDO block carries out an exhaustive search in the
partition set S by testing all possible CTU split partitioning
and coding modes. As described in Section II, complexity
reduction techniques reduce the number of tested solutions (set
S) and thus can reduce significantly the energy consumption.

We define the theoretical lower bound of the energy con-
sumption for the two levels of the RDO: CTU level and Intra
prediction (IP) level. These lower bounds are called respec-
tively the Minimal Energy Point of CTU level (MEP-CTU) and
the Minimal Energy Point of IP level (MEP-IP). The MEP is
the energy obtained when the encoder is able to predict per-
fectly the best solution and thus only this solution is carried-
out to encode the CTU.Therefore, the energy consumption of
the search process is reduced to the energy consumption of the
solution and so the MEP is the minimal energy consumption
point that can be achieved.

B. Energy Reduction Search Space

Section II defines two levels of reduction techniques corre-
sponding to an iterative RDO processes: CTU level and Pre-
diction Level. In the Kvazaar HEVC encoder, two features have
been developed to reduce the number of iterative searches for
the two levels: early split termination and full intra search.
The first feature stops the RDO splitting process when all
transform coefficients are inferred to be equal to zero. When
full intra search is disabled, the number of angular modes
searched is reduced. These two features lead to distinct con-
figurations linked to corresponding levels: CTU level and IP
level. To each configuration and level is matched a MEP that
defines the 9 configurations described in Table III and their
respective energy consumptions are plotted in Figure 3.

Figure 3 shows the average energy consumption and BD-BR
of the different configurations organized in the two levels: CTU
level and IP level for 1080p sequences. The energy reference
point (R) is based on the R configuration of the Table II. As
shown by the T point on Figure 3, the early split termination
tool reduces the energy consumption without degrading the
BD-BR (+0.16%). The full intra search does not affect the
BD-BR as the RDO process can compensate by adjusting the
CTU splitting shown by T1 and R1. This compensation does
not apply to M1 because its CTU splitting is fixed and thus
an important increase of 2.03% of BD-BR is observed. Each
CTU level energy point serves as a MEP reference point for
several IP levels. The MEPs show the maximum achievable
energy reduction.

The energy reduction search space is defined by the percent-
age of energy reduction between a reference point and its asso-
ciated MEP. All complexity reduction techniques summarized

TABLE III
CTU AND IP CONFIGURATIONS

Configuration
Tool M2 M1 M T2 T1 T R2 R1 R
early split termination - - - E E E D D D
full intra search - D E - D E - D E
MEP-CTU E E E D D D D D D
MEP-IP E D D E D D E D D

D: Disable, E: Enable, -: no impact
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Fig. 3. Normalized energy according to CTU and IP configurations , with ⊗
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TABLE IV
NORMALIZED ENERGY CONSUMPTION ACCORDING TO RESOLUTION (%)

Configuration
Res. M2 M1 M T2 T1 T R2 R1 R
2k 18.3 19.7 23.4 61.5 73.9 90.9 65.0 80.1 100
1080p 19.0 20.8 23.9 63.4 73.5 89.3 67.6 80.8 100
720p 16.3 18.5 21.9 49.2 60.7 75.5 58.7 77.1 100
720p(E) 18.4 20.0 23.9 66.3 74.8 87.8 71.0 83.2 100
480p 20.4 21.6 25.6 69.1 78.3 93.4 71.7 82.9 100
240p 22.8 23.8 27.9 74.6 80.5 95.5 76.3 83.4 100

in Section II are constrained within this space of achievable
energy reduction. Table IV summarizes the normalized energy
reduction for the different video resolutions. The results show
that the search space is consistent across all resolutions and
that the largest energy reduction search space occurs at the
CTU level with up to 78.1% of potential energy reduction
whereas working on the IP level offers 30% at best.

From this analysis we can conclude that in real-time soft-
ware HEVC encoder, the energy problematic can be more
efficiently addressed by reducing complexity at the CTU level
rather than at the IP level.

V. CONCLUSION

Complementary to State-of-the-Art complexity reduction
techniques, this paper proposes an analysis of energy reduction
opportunities by considering different levels of granularity,
from global video parameter to prediction unit determination.
We measure the search space in terms of energy reduction ac-
cording to parameters of different granularity levels. This study
demonstrates several elements: at the coarsest granularity, the
energy of HEVC real-time Intra encoding is proportional to
video resolution. At middle granularity, the transform skipping
method is not effective in reducing encoding energy. At a
lower granularity, the CTU level has a potential of energy
reduction up to 78.1% whereas the IP level offers at best 30%
of energy reduction.

The results of this study will be used in future work into
a smart encoding energy controller based on real-time energy
consumption information.
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